

AFRL-IF-RS-TR-2005-332
Final Technical Report
September 2005

CYBER SIGNAL/NOISE CHARACTERISTICS AND
SENSOR MODELS FOR EARLY CYBER
INDICATIONS AND WARNING

Arizona State University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-332 has been reviewed and is approved for publication

APPROVED: /s/

WLADIMIR TIRENIN
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 03 – Mar 05

4. TITLE AND SUBTITLE
CYBER SIGNAL/NOISE CHARACTERISTICS AND SENSOR MODELS FOR
EARLY CYBER INDICATIONS AND WARNING

6. AUTHOR(S)
Nong Ye

5. FUNDING NUMBERS
C - F30602-03-C-0233
PE - 31011G
PR - B104
TA - 00
WU - 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Arizona State University
Industrial Engineering Department
Tempe Arizona 85287-5906

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-332

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Wladimir Tirenin/IFGB/(315) 330-1871/ Wladimir.Tirenin@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
We designed a method to develop a suite of specialized cyber sensors that are optimized to detect cyber attack
observables. We develop our sensors using scientific knowledge of characteristics of cyber signal (attack data) and
noise (normal "norm" data). In our approach, we built models for attack norm characteristics. To detect characteristics,
we used our norm model to filter out noise from mixed data and our attack model to detect a cyber signal. Our solution
aims to reduce false alarm rates, increase detection rates and provide earlier detection with knowledge gained from our
scientific investigation of attacks.
The development phases of the attack-norm separation approach include classifying and profiling cyber attacks,
analytical discovery of signet and noise characteristics, designing and testing sensor models, sensor fusion models, and
finally an optimized suite of cyber sensors. We have created a number of sensors based on a subset of cyber attacks
and tested them to show performance of attack detection and recognition.

15. NUMBER OF PAGES
195

14. SUBJECT TERMS
Cyber Signal, Cyber Sensors, Cyber Attack, Attack Data, Attack Noise, Sensor Fusion
Models, Attack Detection, Sensors 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Summary ... 1
1. Introduction... 2
2. A New Approach to Cyber Attack Detection & Recognition... 2

2.1 Existing Intrusion Detection Techniques.. 3
2.2 Attack-Norm Separation Approach .. 4

3. Attack Classification and Profiling... 6
3.1 Background... 6

3.1.1 Risk assessment theory .. 6
3.1.2 System modeling theory .. 7
3.1.3 Fault modeling theory .. 8
3.1.4 Intersection of theories... 9

3.2 Attack Classification... 10
3.2.1 Classification Tables.. 11

3.2.1.1 UDP Storm.. 17
3.2.1.2 Slammer .. 18
3.2.1.3 Database Insider ... 19
3.2.1.4 BGP Route Isolation ... 19

3.2.2 Classification Trees.. 20
3.2.2.1 Love Letter .. 22
3.2.2.2 SoBig ... 22
3.2.2.3 W32.HLLW.Fizzer@mm ... 22
3.2.2.4 W32.Mimail.A@mm.. 23
3.2.2.5 Bugbear.B@mm .. 23
3.2.2.6 W32.Welchia.Worm .. 23
3.2.2.7 Slammer / MS-SQL Server Worm ... 24

3.3. Attack Profiling.. 24
3.3.1 Graphical Representation of Observations .. 29

3.3.1.1 Apache2 Attack ... 29
3.3.1.2 Dictionary attack .. 30
3.3.1.3 Meteor FTP server DoS attack ... 33
3.3.1.4 NetBus Trojan Attack .. 34
3.3.1.5 NMAP scanner .. 36
3.3.1.6 Smurf distributed DOS attack ... 36
3.3.1.7 Database Insider ... 39
3.3.1.8 BGP Route Isolation ... 40

3.3.2 Profile Table and DFC Relationships .. 41
3.3.2.1 Apache2 Attack ... 41
3.3.2.2 Dictionary attack .. 41
3.3.2.3 Meteor FTP server DOS attack .. 42
3.3.2.4 NetBus Trojan Attack .. 42
3.3.2.5 NMAP scanner .. 43

 ii

3.3.2.6 Smurf distributed DOS attack ... 44
3.3.2.7 Database Insider ... 45
3.3.2.8 BGP Route Isolation ... 45

3.4 Summary ... 46
4. Characteristics of Cyber Signal and Noise ... 47

4.1. DFC for Attacks/Worm in this Section.. 47
4.1.1 EZPublish Confidentiality Attack.. 47
4.1.2 IRC Chat Server Abuse.. 48
4.1.3 ARP Poison.. 49
4.1.4 Sobig Worm... 50

4.2 DFC Generalization from Profiling .. 52
4.3 Signal Detection Models... 53

4.3.1 Physical Space Literature Review ... 53
4.3.2 Physical Space Signal Detection Models... 55
4.3.3 Mapping Physical Space to Cyber Space... 62

4.4 Attack Simulation and Data Collection .. 68
4.4.1 Setup Common to Attacks ... 69
4.4.2 Specific information for each attack .. 73

4.4.2.1 EZPublish Confidentiality Attack ... 73
4.4.2.2 Nmap Scanner ... 74
4.4.2.3 Netbus Trojan.. 74
4.4.2.4 Meteor FTP ... 75
4.4.2.5 IRC Chat Server Abuse ... 75
4.4.2.6 ARP Poison ... 76
4.4.2.7 Sobig Worm... 76

4.5 Analytical Discovery .. 76
4.5.1 Correlation, Distribution and Difference in Mean... 77

4.5.1.1 Procedures .. 78
4.5.1.2 Six Attacks: Probability Distribution of Variables ... 79
4.5.1.3 Six Attacks: Correlation of Variables ... 82
4.5.1.4 Six Attacks: Variable Difference in Means ... 90
4.5.1.5 Sobig Worm Data Analysis ... 93

4.5.2 Wavelets... 94
4.5.2.1 Procedures .. 94
4.5.2.2 Identification and Extraction of Variables ... 95
4.5.2.3 Wavelet Analysis ... 99
4.5.2.4 ANOVA Analysis ... 104

4.6 Summary ... 109
5. Sensor and Sensor Fusion Models .. 109

5.1. Background.. 110
5.1.1 Activity Data.. 110
5.1.2 Attack Data .. 110
5.1.3 Analytical Discovery ... 110

5.2 Sensor Models... 111

 iii

5.2.1 Model Based on Paul Wavelet & Cuscore Statistic... 112
5.2.2 Model Based on Autocorrelation & Cuscore Statistic... 113

5.3 Sensor Fusion Models... 114
5.3.1. Testing Results.. 115

5.3.1.1 Paul Wavelet & Cuscore Statistic... 116
5.3.1.2 Autocorrelation & Cuscore Statistic... 120

5.4 Sensor Fusion.. 126
5.5 Conclusion .. 127

6. Optimized Suite of I&W Observables/Cyber Sensors.. 127
6.1 Sensor Matrix.. 127
6.2 Sensor Optimization Solution ... 131
6.3 Conclusion .. 132

7. Symantec Final Report.. 132
7.1 Task 1 – Collect and examine known cyber attack cases and scenarios to develop threat
and attack profiles. .. 133

7.1.1 Database Attacks.. 133
7.1.2 Virus/Worm Attacks .. 136

7.2 Task 2 – Discover characteristics of cyber signal and noise (attack data and normal data) at
each observable point.. 138

7.2.1 Experimental Process... 140
7.2.2 Experimentation with Attack Data... 141
7.2.3 Experimentation with Attack and Normal Data... 145

7.2.3.1 User Activity: Text Editing.. 146
7.2.3.2 User Activity: FTP Downloading ... 149
7.2.3.3 Characteristics of Cyber Signal and Noise from Experimentation with Attack and
Normal Data ... 151

7.3 Task 3 – Investigate, develop and test sensor models of signal detection, and a sensor
fusion model for each observable point. ... 153

7.3.1 Sensor Model ... 153
7.3.2 Sensor Fusion Model ... 155
7.3.3 Testing of Sensor and Sensor Fusion Models.. 157

7.3.3.1 OLTP Scenarios .. 158
7.3.3.2 Data Warehouse Scenarios... 158
7.3.3.3 General Purpose Scenarios .. 159
7.3.3.4 Testing Results and Observations ... 160

7.4 Task 4 – Formulate and solve an optimization problem to select an optimized suite of I&W
observables / cyber sensors... 161

7.4.1 Optimization Problem for I&W of Insider Database Attacks.................................... 161
7.4.1.1 The Database and Its Users .. 161
7.4.1.2 Human Security Administrators.. 162
7.4.1.3 I&W Infrastructure ... 163

7.4.2 Optimized Suite of I&W Observables / Cyber Sensors... 167
7.5 Task 5 – Test and verify research outcomes using real information infrastructure data that
is available at Symantec.. 168

 iv

7.6 Task 6 – Provide documents that reflect monthly status and final technical report. 169
7.7 Task 7 – Participate in project meetings as necessary. ... 169
7.8 Conclusion .. 170

8. AT&T Final Report... 171
8.1 Deliverables .. 172

8.1.1 Collect known attack cases and scenarios. .. 172
8.1.2 Examine each attack scenario or case to derive the cause-effect network for the attack
scenario. .. 173
8.1.3 Examine the attack scenarios and cases to develop threat profiles............................ 174
8.1.4 Develop attack profiles by enlarging the cause-effect network of each attack scenario
with threat elements by putting the attack scenario under an applicable threat profile. 174
8.1.5 Compare all the attack profiles and define classes of attack profiles. Prepare and
deliver a technical report on attack profiles. Prepare and submit journal/conference paper(s)
using materials from this technical report... 175
8.1.6 Set up a testbed of the IC information infrastructure... 176
8.1.7 Simulate each attack profile on the testbed, and collect cyber signal data, including
activity data, state change data, and performance impact data at candidate observable points
throughout the cause-effect network of the attack profile. ... 176

8.2 BGP Attack Classifications... 176
9. Conclusion .. 181
References... 182
List of Acronyms .. 184

 v

List of Figures

Figure 1. Method for developing an optimized suite of cyber sensors... 5
Figure 2. The cause-effect chain of an ARP poison attack... 8
Figure 3. The proposed solution for the sensor grid. .. 9
Figure 4. Framework of cyber attack classification.. 12
Figure 5. A simplified interdomain routing environment... 20
Figure 6. Example Classification Tree.. 21
Figure 7. Apache2 Web Attack... 31
Figure 8. Dictionary Attack .. 32
Figure 9. Meteor FTP server DoS Attack ... 34
Figure 10. Netbus Trojan Attack .. 35
Figure 11. NMAP Scanner.. 36
Figure 12. Smurf Distributed DoS Attack .. 38
Figure 13. Database Insider Attack... 39
Figure 14. BGP Route Isolation Attack .. 40
Figure 15. Common procedures in signal detection ... 56
Figure 16. Example of the steps in detecting a signal in the physical space 65
Figure 17. Example of verification process .. 68
Figure 18. Setup used for simulation of attacks.. 71
Figure 19. Data Collection Scenarios – Local and Remote .. 72
Figure 20. Example shapes of distributions.. 80
Figure 21. KS and Chi Squared sample test results .. 81
Figure 22. Procedure of finding shifting variables in autocorrelation analysis 83
Figure 23. Procedure of finding common variables in autocorrelation analysis 84
Figure 24. Procedure of finding shifting variable in Pearson correlation analysis....................... 87
Figure 25. Procedure of finding common shifting variable in Pearson correlation analysis........ 88
Figure 26. Wavelet shapes of transformations.. 100
Figure 27. Examples of basic shapes of signal patterns.. 101
Figure 28. Building sensor models offline.. 111
Figure 29. Steps for the Paul wavelet & Cuscore statistic model. .. 113
Figure 30. Steps for the autocorrelation & Cuscore statistic model. .. 114
Figure 31. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Local........... 116
Figure 32. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Remote........ 116
Figure 33. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Local. 117
Figure 34. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Remote............ 117
Figure 35. TCP\Segments/sec, EZPublish, Web Browsing, Local... 118
Figure 36. TCP\Segments/sec, EZPublish, Web Browsing, Remote. .. 118
Figure 37. TCP\Segments/sec, EZPublish, Text Editing, Local... 119
Figure 38. TCP\Segments/sec, EZPublish, Text Editing, Remote. .. 119
Figure 39. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler

Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Local.. 120
Figure 40. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler

Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Remote. 120

 vi

Figure 41. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Local.. 121

Figure 42. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Remote .. 121

Figure 43. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing,
Local. .. 122

Figure 44. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing,
Remote. ... 122

Figure 45. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing, Local.
... 123

Figure 46. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing,
Remote. ... 123

Figure 47. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing, Local.
... 124

Figure 48. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing,
Remote. ... 124

Figure 49. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing, Local.
... 125

Figure 50. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing, Remote.
... 125

Figure 51. Collection of attacks for this study.. 133
Figure 52. Attack profile for database insider attack.. 134
Figure 53. Correlation percentages across four machines .. 144
Figure 54. Correlation percentage for both local and remote data collection modes 147
Figure 55. Correlation percentages using only common non-zero, non-invaried variables 148
Figure 56. Correlation percentage for both local and remote data collection modes 150
Figure 57. Correlation percentages using only the common non-zero, non-invaried variables . 151
Figure 58. An example Bayesian network fusion model.. 156
Figure 59. Number of unique paths per prefix. This is an indicator that paths in BGP are very

dense, giving a good indication of how to detect signal accordingly. 172
Figure 60. Rate of Discovery: the number of new unique paths discovered aggregated by AS.

This graph shows that for all listeners, there are relatively few new unique paths added on a
daily or weekly basis, another good signaling indicator... 173

Figure 61. Number of signature validations required by scheme. Our schemes (Prefix, Origin AS,
All AS) represent as much as a 97% decrease in validations over the S-BGP standard, thus
making real-time path authentication possible due to the decrease in cryptographic
computations required... 175

 vii

List of Tables

Table 1: Characteristics of attack and norm data.. 4
Table 2. Comparing intrusion detection techniques ... 4
Table 3. Example of cyber-attack classifications in table format ... 17
Table 4: Illustration of Profile... 25
Table 5. Apache Web Server Attack... 27
Table 6. Example data definitions .. 28
Table 7. Dictionary Attack.. 41
Table 8. Meteor FTP DOS Attack .. 42
Table 9. Netbus Trojan Attack.. 42
Table 10. NMAP Scanner ... 43
Table 11. Smurf DoS Attack... 44
Table 12. Database Insider Attack .. 45
Table 13. BGP Route Isolation Attack ... 46
Table 14. EZPublish Observation Points .. 48
Table 15. EZPublish DFC... 48
Table 16. IRC Chat Observation Points.. 48
Table 17. IRC Chat DFC .. 49
Table 18. ARP Poison Observation Points ... 49
Table 19. ARP Poison DFC.. 50
Table 20. Sobig Observation Points.. 50
Table 21. Sobig DFC .. 51
Table 22. Generalized DFC from attack profiles [24] .. 52
Table 23. Number of papers review in each area.. 54
Table 24. Summary of keywords used in literature search... 54
Table 25. An example mapping physical signal detection into DFC and model.......................... 55
Table 26. List of all transformation methods, correspondent features, and characteristic. 56
Table 27. Examples of DFCs and signal detection models [21]... 63
Table 28. Examples of generalized data from existing attack profiles ... 64
Table 29. Commonly used feature extraction methods from the physical domain 66
Table 30. Defining variables for associated data sources ... 67
Table 31. Extracting variables .. 67
Table 32. Analyzing extracted variables... 68
Table 33. Data collected and collection tools ... 69
Table 34. Number of variables that fall into a particular distribution in EZPublish attack.......... 81
Table 35. Example result of uncommon variables from EZPublish... 82
Table 36. Autocorrelation Shifting Variables on machine Victim ... 85
Table 37. Example of an uncommon variable from ARP Poison... 85
Table 38. Example of a common variable .. 85
Table 39. Sample Pearson Correlation Common Variables on Machine Victim 89
Table 40. Example pair of uncommon variables .. 89
Table 41. Example pair of common variables .. 90
Table 42. Mann-Whitney test from UDP Storm attack .. 90

 viii

Table 43. Example results from Mann-Whitney on ARP Poison attack 90
Table 44. Example list of common variables that shift averages ... 91
Table 45. Example list of uncommon variables from NMAP attack.. 92
Table 46. Results from KS and Chi-Squared tests on worm .. 93
Table 47. Autocorrelation results for worm.. 94
Table 48. Pearson correlation results for worm.. 94
Table 49. Variables identified and extracted .. 95
Table 50. EZPublish Attack.. 102
Table 51. NMAP Scanner Attack ... 102
Table 52 Netbus Trojan Attack... 102
Table 53. Meteor FTP Attack ... 103
Table 54. IRC Chat Attack.. 103
Table 55. ARP Poison Attack ... 103
Table 56. Input table to ANOVA.. 105
Table 57. EZPublish Attack.. 105
Table 58 NMAP Scanner Attack .. 106
Table 59. Netbus Trojan Attack.. 106
Table 60. Meteor FTP Attack ... 107
Table 61. IRC Chat Attack.. 107
Table 62. ARP Poison Attack ... 108
Table 63. DFC Mapping for Sensor Models... 112
Table 64. Sensor testing outline.. 115
Table 65. Paul wavelet and Cuscore statistic.. 126
Table 66. Autocorrelation and Cuscore Statistic .. 126
Table 67. Matrix of Cyber Sensors ... 128
Table 68. Optimal Solution... 131
Table 69. Optimal solution with 3 binary sensors .. 131
Table 70. Observations for database insider attack .. 135
Table 71. DFC’s for database confidentiality attack .. 135
Table 72. Observations for the Sobig e-mail virus ... 136
Table 73. DFC’s for Sobig.. 137
Table 74. Non-zero, non-invaried performance log variables on the attacker machine 141
Table 75. Non-zero, non-invaried performance log variables on the bystander machine 141
Table 76. Non-zero, non-invaried performance log variables on the mail server machine........ 141
Table 77. Non-zero, non-invaried performance log variables on the victim machine 142
Table 78. Summary results from the Pearson correlation analyses on the attacker machine 142
Table 79. Summary results from the Pearson correlation analyses on the bystander machine .. 143
Table 80. Summary results from the Pearson correlation analyses on the mail server machine 143
Table 81. Summary results from the Pearson correlation analyses on the victim machine........ 143
Table 82. Non-zero, non-invaried performance log variables on the victim machine 146
Table 83. Pearson correlation analyses on the victim machine for the text editing.................... 147
Table 84. Non-zero, non-invaried performance log variables on the victim machine 149
Table 85. Pearson correlation analyses on the victim machine for FTP downloading............... 149
Table 86. Classification of BGP Attacks .. 176

 1

Summary

We designed a method to develop a suite of specialized cyber sensors that are optimized
to detect cyber attack observables. We develop our sensors using scientific knowledge of
characteristics of cyber signal (attack data) and noise (normal “norm” data). In our approach, we
built models for attack norm characteristics. To detect characteristics, we used our norm model
to filter out noise from mixed data and our attack model to detect a cyber signal. Our solution
aims to reduce false alarm rates, increase detection rates and provide earlier detection with
knowledge gained from our scientific investigation of attacks.

The development phases of the attack-norm separation approach include classifying and
profiling cyber attacks, analytical discovery of signal and noise characteristics, designing and
testing sensor models, sensor fusion models, and finally an optimized suite of cyber sensors. We
have created a number of sensors based on a subset of cyber attacks and tested them to show
performance of attack detection and recognition.

 2

1. Introduction

A suite of specialized cyber sensors, that are optimized to detect cyber attack
observables, is imperative because of the efficiency, accuracy, and adequacy problems
encountered by existing intrusion detection systems that use event streams (raw activity data). As
we see how physical sensor technologies (e.g., radar sensors, sound sensors, light sensors, etc.)
have been developed for signal detection in the physical world, the development of sensors for
cyber signal detection will need to rely on the scientific knowledge of characteristics of cyber
signal (attack data) and noise (normal “norm” data) to achieve detection efficiency, accuracy and
adequacy. However, characterization of cyber attack and normal data is far from fully
established, and little scientific knowledge exists. We designed a method for building a sensor
grid based on scientific knowledge of attack and normal data and developed an optimized suite
of cyber sensors using:

• An innovative combination of risk assessment, system modeling, and fault modeling
theories that capture resource-process, activity-state-performance, and attack-threat-
mission interactions temporally, spatially, and functionally in cause-effect networks of
attack profiles

• Scientific discovery of cyber signal and noise characteristics
• Quantitative and qualitative models for cyber attack detection and recognition based on

signal processing, detection, and time series analysis theories, cu-score statistic test
techniques, and other technologies, according to characteristics of cyber signal and noise

• Sensor fusion models based on decision and fusion theories
• Optimization of I&W observables/cyber sensors based on Operations Research theory

The following sections in this report summarize our research. We start by describing
existing intrusion detection systems and their shortcomings. We then introduce our attack-norm
separation approach. Our approach involves a number of steps which we describe in the
subsequent sections on attack classification and profiling, characteristics of cyber signal and
noise, sensor and sensor fusion models, and optimized suite of cyber sensors. Following these
sections, we present the results of our two subcontractors on this project: Symantec and AT&T.
Finally, we conclude this report.

2. A New Approach to Cyber Attack Detection & Recognition

We first describe two existing approaches to intrusion detection: signature recognition
and anomaly detection. We then present a new approach, called attack-norm separation, and
compare it with the two existing approaches. (Note that in the earlier months of this project, we
were calling our approach signal-noise separation. This caused some confusion and we changed
it to attack-norm separation. Thus, where previous reports used the terms signal and noise, we
use attack and norm in this report.)

 3

2.1 Existing Intrusion Detection Techniques

Two existing approaches to intrusion detection are signature recognition and anomaly
detection. Most commercial intrusion detection systems, including anti-virus software, employ
signature recognition to detect cyber attacks. In this approach, signature patterns of attacks are
either manually captured by expert analysts or automatically discovered through mining
computer and network activity data collected under attack and normal operating conditions [1,2].
Attack signatures are stored and used in an intrusion detection system to check against activities
and files on computers or networks for the presence of a signature. If present, the system detects
an attack. Since the signature patterns of novel attacks are often unknown, signature recognition
is not effective against them.

Anomaly detection considers any large deviation from normal system behavior as an
indication of a possible attack [2,3]. Thus, it requires an established model of normal system
behavior (norm profile), to monitor activities on computers and networks and measure deviations
from the norm. A large deviation indicates a possible attack. We can establish a norm profile
according to the system norm by design, or by learning from data of system behavior collected
under normal operating conditions. Various norm profile modeling techniques have been
investigated, including strings representing sequences of system calls, Statistical Process Control
(SPC) charts, Markov chain models, data clusters, association rules and artificial neural networks
[2,3]. An anomaly detection technique can detect a novel attack if it shows a large deviation from
its norm profile. However, a novel attack may not deviate largely from the norm profile, yielding
a miss or detection failure. Furthermore, the modeling technique used in an anomaly detection
solution may not be powerful enough to cover all kinds of normal system behavior, especially
that which is normal, but irregular. When such behavior occurs, the solution erroneously
indicates a possible attack, yielding a false alarm. Too many false alarms burden system
administrators, who must investigate them, rendering the anomaly detection approach
impractical to some extent. Hence, in spite of its advantage in possibly detecting novel attacks,
anomaly detection has not become popular in commercial intrusion detection systems.

Essentially, both approaches employ data analysis combined with a model of system
behavior to detect attacks. The two approaches differ in their underlying models. Signature
recognition uses a model of “bad” system behavior under the attack condition, whereas anomaly
detection uses a model of ''good'' system behavior under the normal operation condition. Attacks
on computers and networks are detected when the observed behavior either correlates with
known attack profiles or diverges from known normal profiles. Neither of the two approaches
requires and enforces the use of both attack and normal behavior models in contrast to achieve
detection accuracy. The mixture of attack and norm data extracted for intrusion detection
weakens the distinctive characteristics of both, resulting in poor detection performance
(including misses and false alarms). If we consider a data characteristic to be strong or weak,
there are four combinations of characteristics in mixed data shown in Table 1.

 4

Table 1: Characteristics of attack and norm data

 Attack Characteristic
 Weak Strong

Weak weak norm, weak attack weak norm, strong attack Norm
Characteristic Strong strong norm, weak attack strong norm, strong attack

Existing techniques work well for only one combination: strong attack and weak norm

characteristic. A signal detection model, incorporating characteristics of both signal and noise
mixed together in monitored data, can more accurately detect a signal in noise than a model
relying on only one element, and is more sensitive to low signal-to-noise ratios (where the signal
is buried in a lot of noise) [4]. A low signal-to-noise ratio is often the case in cyber attack
detection since there are usually many more normal activities than attacks on computer and
network systems.

2.2 Attack-Norm Separation Approach

In our approach, we built models for cyber signal (attack) and noise (norm)
characteristics. To detect characteristics, we used our norm model to filter out noise from mixed
data and our attack model to detect a cyber signal. Table 2 illustrates how attack-norm separation
differs from signature recognition and anomaly detection.

Table 2. Comparing intrusion detection techniques

 Anomaly
Detection

Signature
Recognition

Attack-
Norm

Separation
Detect deviation from normal
(possible attack)

X X

Identify known attack X X

 As shown in Table 2, our approach detects norm deviations, which could indicate a
possible attack, and identifies the attack if it is known. For novel attacks, our solution draws on
generalized information from profiles of known attacks to classify observed anomalies into
possible attack categories. We aim to reduce false alarm rates, increase detection rates and
provide earlier detection with knowledge gained from our scientific investigation of attacks.

Unlike current solutions, which monitor only activity data, the attack-norm separation
approach considers the true normal space, to contain activity, state and performance data, thus
providing adequate coverage of the cause-effect propagation data space associated with normal
user activities and attacks. Each sensor model calls for the monitoring and processing of only a
small amount of specific data to provide certain characteristics of attack and norm activity.
Hence, each model is efficient, accurate, and adequate in detecting a given attack signal in
normal noise. This approach aims to raise the level of detection accuracy, reduce the amount of

 5

monitored data, improve the relevance of monitored data to intrusion detection, and allow for
easy protection of a small amount of specific data.

Figure 1 shows the steps of our development process. First, we classified several cyber
attacks and discovered their associated cause-effect networks to identify observable points for
cyber attack detection. Next, we characterized observable points using signal processing, time
series, and other models of signal detection. The first two steps form an iterative process. As we
explored the characteristics discovered through analysis, we verified them with the attack
profiles. This focused verification gave us a two-way validation of the expected observables
from the profile, and observations made in the analysis.

Figure 1. Method for developing an optimized suite of cyber sensors

The third and forth steps in Figure 1 are to develop sensor and sensor fusion models,
which fuse decision outcomes from different sensors for the same cyber signal and noise data
into an integrated decision. We started by taking results from the first two steps and developing
sensor models with collected simulation data (offline development). We then verify the models
in real-time (online verification). This verification confirms that the sensors are working as
expected. Finally, we developed an optimized suite of cyber sensors that uses the least number of
sensors necessary to accurately detect and identify the attack profiles in our study.

We expect that attack coverage for our attack-norm separation approach will expand with
increasing knowledge of attack and norm characteristics, just as signal detection knowledge and
technologies in the physical world evolved. A comprehensive knowledge of cyber attack and
norm characteristics establishes a solid, scientific foundation of cyber attack detection to help
overcome the shortcomings of existing empirical techniques.

 6

3. Attack Classification and Profiling

The first step in building sensors for our sensor grid is attack classification and profiling.
In order to discover characteristics of attacks, we need to first have a better understanding of the
attacks considered in our study. We have looked at over 100 attacks, and classified a number of
them using the scheme presented in this section.

Rigorously cataloguing computer and network attacks involves two steps: classification
and profiling. In attack classification, we organize attacks into a classification table and tree
based on the nature of the attack. In attack profiling, we outline the steps involved in the setup
and execution of an attack. With these tools, we can identify the pre-attack phases of an attack
and the observable points that make up the attack’s signature. Identifying the observable points
in an attack enables the design of a sensor model to detect it. Additionally, the sensor model can
be designed to specifically identify an attack in its pre-attack phase, thereby allowing room for
measures to counter the attack before the strike. This is much more desirable than detecting an
attack after it has begun to propagate and cause damage.

In this section, we give background material for the design of our attack classification
tree and profiling method. The following subsections present attack classification and attack
profiling. Finally, we conclude this section.

3.1 Background

We categorize attacks using three theories to provide a scientific foundation: risk
assessment, system modeling and fault modeling.

3.1.1 Risk assessment theory

Three factors contribute to any risk: asset, vulnerability, and threat [5,6]. We define each

of these terms and use them in our attack classification scheme.
For the risk of cyber attack, assets are what the defender needs to protect on computers

and networks. Assets include information processing, storage and communication resources such
as CPU and memory at the hardware level, and the operating system, data files, databases,
application programs, and network programs at the software level. Each asset is assigned with an
asset value to measure the relative importance of the asset in the defender’s missions. A mission
model can be constructed to specify missions and their projection onto assets in the defender’s
information infrastructure. The asset value can be derived from the projection of missions onto a
given asset. Three attributes of an asset have security impact on the asset value: availability,
integrity and confidentiality. The availability attribute of an asset describes whether or not users
with access rights to the asset can access the asset and obtain service at any time when service is
needed. The confidentiality attribute of an asset describes whether or not the content or operation
of the asset is kept secret from unauthorized users. The integrity attribute of an asset describes
whether or not the content or operation of the asset can be kept accurate without unauthorized
alteration or deletion, and thus service from the asset can be trusted. A cyber attack that causes a

 7

change from the desired level of the availability, confidentiality and integrity state of an asset
results in a compromised asset value, and becomes a security problem.

Vulnerability evaluates the security strength of an asset. An asset is vulnerable if there is
an opportunity to cause the damage or loss of the asset value. An asset may have more than one
vulnerability. A vulnerability value can be assigned to indicate the severity of asset damage or
loss if the vulnerability is exploited in a malicious cyber attack.

While assets are what we are protecting, threats are potential attacks that we are
protecting from. A threat value can be assigned to indicate the likelihood or potential of the
threat. The attacker’s threat profile can be established to characterize the attacker’s sources (e.g.,
nation states, terrorists, criminal elements, hackers, or corporate competitors, etc.), attack
capabilities (e.g., resources, skills, tools, methods including passive, active, close-in, insider, and
distribution, etc.), motivations (e.g., malicious versus non-malicious, intelligence gathering, theft
of intellectual property, causing embarrassment, pride and proof of skills, etc.), status (e.g.,
outsider, insider, etc.), readiness (e.g., how much intelligence information about the target
system the attacker has possessed), and so on.

There is no risk if any one of the three contributing factors—asset, vulnerability, or
threat—does not exist. An asset may have multiple vulnerabilities, each of which may be subject
to multiple applicable threats.

3.1.2 System modeling theory

A system consists of two basic elements: resource and process [6,7]. A resource in the
system, corresponding to an asset in risk assessment theory, provides service to a process
requesting service from the resource. Multiple processes may request service from the resource
at the same or different times.

A process has input and output. Servicing a process changes the state of a resource. A
change in the resource state in turn has impact on the output performance of the process. For
information security, there are three attributes of resource state: availability, confidentiality, and
integrity as defined in risk assessment theory, and there are three attributes of output
performance: timeliness, precision, and accuracy. Timeliness measures how long it takes to
produce the output. Precision measures how much output is produced, related to the quantity of
the output. Accuracy measures the correctness of the output, related to the quality of the output.
The availability, confidentiality, and integrity attributes of the resource state affect the
timeliness, precision, and accuracy attributes of output performance respectively. For example, a
CPU is a resource or an information processing asset. When a CPU services a process, the
availability attribute of the CPU state changes because less CPU time becomes available. The
availability state of the CPU in turn affects the timeliness attribute of the output performance for
the process. Activities in the system include user activities to initiate processes and receive
service and operations of resources to provide service. User activities to initiate processes change
the state of resources, and changes in the resource state in turn have impact on the output
performance of processes. Hence, in a system consisting of resources and processes, there are
resource-process interactions and activity-state-performance interactions.

 8

3.1.3 Fault modeling theory

A fault has a propagation effect in a system, involving activity-state-performance
interactions as discussed in system modeling theory [7]. Hence, a fault can be modeled in a
cause-effect chain or network of activity, state change, and performance impact, all occurring in
the system during the fault effect propagation. For information security, the attacker’s activities
cause the state change of resources on computers and networks, which in turn produces
performance impact (e.g., performance error of processes or degraded quality of service provided
by resources to processes), as shown in Figure 2.

Activity 1: the attacker responds to a host’s who-has
request for a given IP address with a wrong MAC
address

Activity 2: data packets travel on the network
carrying the attacker’s response with the wrong
MAC address

Activity 3: the host receives the response with the
wrong MAC address

Activity 4: the host updates the ARP table with the
wrong MAC address for the given IP address
State Change 1: the integrity state of the resource,
the ARP table, is compromised

Activity 5: the host uses the wrong MAC address to
connect to the given IP address

Activity 6: Internet generates an error message for
failure to connect, and data packets travel on the
network carrying the error message

Activity 7: the host receives the error message
Performance Impact 1: failure to connect

Figure 2. The cause-effect chain of an ARP poison attack.

 9

3.1.4 Intersection of theories

Although the above theories have been applied separately for various aspects of
information security and assurance, they have never been combined to predict cyber attacks. We
propose to innovatively combine the above theories in our proposed solution for the sensor grid
(see Figure 3).

Figure 3. The proposed solution for the sensor grid.

Our proposed solution for the sensor grid will include threat profiles, attack profiles,

observable points and characteristics of cyber signal and noise at those points. These concepts
are described below.

A threat profile captures the threat factor in risk assessment theory. Threat profiles
represent various types of cyber threats. Such profiles may consist of information that describes
the nature of a threat, such as an attacker’s source, capabilities, motivation, status, readiness, etc.

Attack profiles exist for each threat profile. An attack profile takes the form of a cause-
effect chain or network of activities, state changes, and performance impacts with resource-
process interactions and activity-state-performance interactions throughout the course of an
attack scenario, as the one shown in Figure 2, but also enlarged with elements from a threat
profile to present a comprehensive picture of an attack scenario under a threat profile. Under
each threat profile, a number of attack scenarios may be applicable, and therefore there will a

 Threat Profile 1 Threat Profile I

Attack Profile i1 Attack Profile in Attack Profile iN

Threat Profile i

Observable Point 1 Observable Point k Observable Point K

Characteristics of
Cyber Signal and Noise

Characteristics of
Cyber Signal and Noise

Characteristics of
Cyber Signal and Noise

I&W Observables/
Cyber Sensors &

A Sensor Fusion Model

I&W Observables/
Cyber Sensors &

A Sensor Fusion Model

I&W Observables/
Cyber Sensors &

A Sensor Fusion Model

An Optimized Suite of I&W Observables/Cyber Sensors

Other Threat Profiles

Other Attack Profiles

Other Observation Points

Other Characteristics of
Cyber Signal and Noise

Other I&W Observables/
Cyber Sensors &

Sensor Fusion Models

 10

number of attack profiles, one for each attack scenario. The same attack profile may be used
under different threat profiles.

When we consider an attack profile under a threat profile, elements of the threat profile
will be added to the cause-effect or network of the attack profile. For example, elements about
the nature of the attack (i.e. attacker capabilities) in the threat profile may be added to the cause-
effect chain or network of the attack profile as pre-conditions for certain activities, state changes,
or performance impacts along the cause-effect chain or network. After being enlarged with
elements of the threat profile, the attack profile will become a cause-effect network if it is a
cause-effect chain before the enlargement.

Therefore, the cause-effect network of the attack profile, enlarged with elements of a
threat profile, will combine the asset, vulnerability and threat factors in risk assessment theory,
and combine risk assessment theory with system modeling and fault modeling theories.
Incorporating elements of the threat profile into the cause-effect network of the attack profile
will improve detection efficiency and accuracy, and increase the warning time for early cyber
I&W.

Nodes in the cause-effect network of an attack profile will represent the observable
points, such as activities (or events), state changes, and performance impacts. Directed links
between nodes will represent cause-effect relationships between nodes. Observable points along
the cause-effect network of each attack profile. Each node in the cause-effect network of each
attack profile will become a candidate observable point. Only those observable points that have
cyber sensors from an optimized suite of cyber sensors (discussed below) will be selected to be
observable points that will be monitored by cyber sensors in the sensor grid.

Characteristics of cyber signal and noise at each observable point that will be important
in cyber signal detection, including:

a) Statistical characteristics, such as mean, variance, probability distribution,
covariance, auto-correlation, dependency, and stationarity.

b) Characteristics of spatial and temporal correlations, such as frequency band, shift,
trend (i.e., cyclic and seasonal), drift (i.e., upward and downward), intermittent
spike or bump, and change (step change, exponential change, slope change, sine
wave, square wave, etc.), characteristic changes in dynamic state, phase
synchronization, etc.

Using the concepts outlined in this section, we create an attack classification scheme to
capture the threat profile along with aspects of the attack profile in a table and tree format to
begin cataloguing computer and network attacks.

3.2 Attack Classification

We develop a system fault risk (SFR) framework for cyber attack classification based on
the theories described in the previous section. Because many attacks have different forms, we
must understand the similarities and differences between attacks. Our classification framework
simplifies the task of comparing attacks. This framework allows us to group attacks to develop
intrusion detection techniques based on group characteristics. In this section we describe the SFR
classification framework for classifying cyber attacks. The SFR framework incorporates a cause-

 11

effect chain into its design. To build the classification structure, we first consider vulnerabilities
in computer and network systems.

Vulnerabilities can be created in otherwise secure systems by improper configuration of a
system or the installed software. For example, certain systems and software packages ship with a
default account and password. A common configuration error is forgetting to change or remove
that default account, and this leaves a wide-open back door for attackers. Implementation errors
can introduce vulnerabilities into systems that have perfectly secure implementation and design.
Buffer overflow vulnerabilities caused by improper bounds checking on variables is a common
example of this error. Specifications may contain weaknesses by design or error, and these
weaknesses cannot be corrected later in design or implementation. For example, consider the
TCP Reset attack where the attacker listens for connections to a victim computer. When a client
attempts to connect to the victim, the attacker sees it and sends a TCP reset packet to the victim
that is spoofed to appear to have come from the client. In this way the client uses the TCP
specification to tear down any attempted connections to the victim. Human gullibility is a
constant source of vulnerability as attackers routinely attempt to fool people into revealing
critical information such as usernames, passwords, and credit card numbers.

Using the SFR framework, and taking into account vulnerabilities present in computer
and network systems, we build an attack classification table in the next section. For another
perspective, we also create attack classification trees in the following section.

3.2.1 Classification Tables

SFR and vulnerability analyses combined with in depth conceptual analysis of individual
attacks produce a collection of factors involved in cyber-attacks. The factors revealed are sorted
into the categories: objective, propagation, attack origin, action, vulnerability, asset, state effects
and performance effects. These categories make up an incident. The incident encompasses the
two subclasses: threat and attack, and a cause-effect chain. This attack classification scheme is
shown in Figure 4.

 12

Figure 4. Framework of cyber attack classification

We describe the purpose of each column shown in Figure 4 and outline the definitions of
the elements present in each column:
• Objective: This column is a combined description of technical skills, resource levels, and

potential threat sources (which implies intent).
o Spying: This can occur at a government or corporate level. In either case, the

perpetrator(s) are assumed to have high skills and potentially high levels of resources at
their disposal. This type of attack is politically motivated and includes interests such as
information theft and sowing disinformation.

o Professional Crimes: Committed by perpetrator(s) whose objectives are financially based.
This could be an individual or organization. Potentially high skill level and resources.

o Terrorism: This can be conducted by perpetrator(s) of varying, but potentially high, skill
levels. Terrorists are politically motivated and are interested in information theft, and
destruction of resources on a massive scale.

o Corporate Rivalry: An organization with limited resources and a high technical ability.
Corporations are interested in information theft to gain an advantage on their
competition. They may also be destructive and intend to harm competitive corporations.

o Cracking: A single individual (cracker) likely with limited resources and a high technical
ability. Usually motivated by a technical challenge and may or may not be destructive.

o Vandalism: A single individual with few resources and modest technical ability. Vandals
want to make their mark on the world, and do so by defacing or destroying assets.

by means of from an use a by expoiting a on an causing that exhibit

Objective Propagation Attack Origin Action Vulnerability Asset State Effects Performance
Effects

Spying Human Local Probe Configuration Network Availability Timeliness

Professional
Crimes Autonomous Remote (Single

Source) Scan Specification
/Design System Integrity Precision

Terrorism
Remote
(Multiple
Source)

Flood (Single
Source) Implementation Process Confidentiality Accuracy

Corporate
Rivalry

Flood (Multiple
Source) (More specific) Data None (allowed

action)
None (allowed

action)
Cracking Authenticate User

Vandalism Bypass
Voyeurism Spoof

Any Read
Copy

Termination
Create

Processes
Execute

Steal
Modify
Delete

Misdirect
Eavesdrop

Incident

Threat Attack

Cause (Activity) Effect

 13

o Voyeurism: A single individual with few resources and modest technical ability. Voyeurs
are curiosity seekers and typically any damage they cause is usually accidental.

• Propagation: This column is used to describe the level of propagation employed by the
attack. For our purposes it is sufficient to distinguish between human controlled propagation
of attacks and the autonomous propagation of viruses and worms.
o Human: Human propagation attacks are those actively controlled by a human being. This

includes Trojans that provide a back door to the system, scheduled distributed DoS
attacks, and most other attacks.

o Autonomous: Those attacks executed by self-perpetuating automated processes. Little or
no human interaction is needed for these attacks to be successful. When human
interaction is required, it is on the part of an unsuspecting user. This class of attacks
includes viruses and worms. Trojans containing viruses and worms are also included in
this category.

• Attack Origin: This column describes the physical origin of the attack with respect to the
victim machine.
o Local: This is an attack that is initiated on the machine being attacked. An example of a

local attack is a user logged onto a machine who then attempts to gain root access to the
same machine. (This is an insider attack).

o Remote (single source): This is an attack that originates somewhere other than on the
machine being attacked, and has a single point of origin. An example of a remote single
source attack would be an unauthorized user attempting to gain access to a system over a
network. (This is an outsider attack).

o Remote (multiple sources): This is an attack that originates somewhere other than on the
machine being attacked, and has multiple points of origin. An example of a remote
multiple source attack would be any distributed denial of service attack.

• Action: This column descries what specific activity the attacker is performing on the victim.
o Probe: “Access an asset in order to determine its characteristics” [8].
o Scan: “Access a set of assets sequentially in order to identify which assets have a specific

characteristic” [8].
o Flood (Single Source): “Access an asset repeatedly in order to overload the asset’s

capacity” [8]. In this case, all of the flooding data comes from a single location.
o Flood (Multiple Source): “Access an asset repeatedly in order to overload the asset’s

capacity” [8]. In this case, the flooding data comes from 2 or more locations.
o Authenticate: “Present an identity of someone to a process and, if required, verify that

identity, in order to access an asset” [8].
o Bypass: “Avoid a process by using an alternative method to access an asset” [8]. This can

be used to gain access to, or elevate privileges in a system.
o Spoof: “Masquerade by assuming the appearance of a different entity in network

communications” [8].
o Read: “Obtain the content of data in a storage device, or other data medium” [8]. This

activity implies that open, read, and possibly close operations are performed on a static
file or data source.

o Copy: “Reproduce an asset leaving the original asset unchanged” [8].

 14

o Termination: Terminate a running process. This is frequently done in single point denial
of service attacks, where an attacker will use a buffer overflow to kill a process.

o Create Processes: Spawn multiple processes, child or otherwise. This action is used by
denial of service attacks that attempt to fill up the process table on a system.

o Execute: Execute as a process on a system. Typical of viruses and trojans, this is usually
part of a multiple step attack where code is executed on the victim machine.

o Steal: “Take possession of an asset without leaving a copy in the original location” [8].
o Modify: “Change the content or characteristics of an asset” [8].
o Delete: “Remove an asset, or render it irretrievable” [8].
o Misdirect: Literally, “To lead in the wrong direction”. In this case the act of misdirection

is deliberate and deceitful. Such as, fulfilling a request to an asset that appears to be
legitimate, but in actuality is a subterfuge used to extract information from the asset.
Cross site scripting is an example of this. Since we include the concept of deceit,
misdirection covers any attempt to lie to an asset and provoke an action based on the
falsehood. Thus, email scams are counted as misdirection.

o Eavesdrop: The extraction of data from a dynamic and transient data stream. This activity
implies that the collection process does not significantly disturb the data stream.

• Vulnerability: This column describes the type of vulnerability that is being exploited by the
attacker. In the categorization we list the primary sources of vulnerabilities, which are
sufficient for our purposes.
o Configuration: This vulnerability occurs when a resource is configured improperly, and

as a result a security hole is created [8]. An example of this could be any system or
software that ships with a default account that is not changed or removed upon setup.

o Specification/Design: “A vulnerability inherent in the design or specification of hardware
or software whereby even a perfect implementation will result in a vulnerability” [8].

o Implementation: “a vulnerability resulting from an error made in the software or
hardware implementation of a satisfactory design” [8].

• Asset: This column describes the component that is under attack. Again, while this is a fairly
high level list, it suits our purposes well.
o Network: “An interconnected or interrelated group of host computers, switching

elements, and interconnecting branches” [8].
o System: “A device that consists of one or more associated components, including

processing units and peripheral units, that is controlled by internally stored programs, and
that can perform substantial computations, including numerous arithmetic operations, or
logic operations, without human intervention during execution. Note: May be stand
alone, or may consist of several interconnected units” [8].

o Process: “A program in execution, consisting of the executable program, the program’s
data and stack, its program counter, stack pointer and other registers, and all other
information needed to execute the program” [8].

o Data: Representations of facts, concepts, or instructions in a manner suitable for
communication, interpretation, or processing by humans or automatic means [9]. Data
can be in the form of files in a computer’s volatile or non-volatile memory, or a data
storage device, or in the form of data in transit across a transmission medium [8].

 15

o User: A user has at least some access privileges on a specified system. These access
rights may vary from user to user. Attacks against users are typically attempts to mislead
or misdirect. Examples of user attacks include misleading emails (scams) and
misdirection through cross site scripting.

• State Effect: This column is used to describe the state change that occurs on the victim as a
result of an attack.
o Availability: The availability state of a resource is related to the responsiveness of the

resource in meeting service requests [8]. A successful attack on availability will cause the
response time of a request to an affected service to increase, or the service to become
entirely unavailable. By definition, all denial of service attacks exhibit availability
effects. An example would be the UDP storm attack, where availability of the UDP echo
service to legitimate requests is reduced on the victim machine.

o Integrity: The integrity state of a resource is related to the correctness of a resource in
meeting service requests [8]. Integrity also includes the concept of data validity. No user
(authorized or not) should intentionally or accidentally corrupt data, and unauthorized
users should not modify data in any way. It follows from this that anything an
unauthorized user does that alters or adds a file, user account, changes permissions, or
modifies data on the system in any manner is an integrity violation. An example of an
attack that affects integrity is the ARP poison attack. In the ARP attack an unauthorized
user places invalid MAC addresses into the victim machines ARP table.

o Confidentiality: The confidentiality state of a resource is related to the precision of the
resource in meeting service requests, that is, “whether the resource produces the precise
amount of output for a given input” [8]. A confidentiality attack aims at producing more
information than normal for a given request. For example, an attacker who is monitoring
a network transmission will collect a duplicate copy of a transaction, with the result that
twice as much data will be produced as normal, one copy for the recipient, and one for
the attacker. A successful attack on confidentiality could provide the attacker with
information about the network, individual systems, system processes, and or data on a
host. Furthermore, since use of resources is part of a trust relationship, (specified or not)
unauthorized use of resources should result in zero output. Thus any successful
unauthorized use of resources can also be considered a confidentiality violation. Note that
under this definition, if an intruder were to break into a system and use the printer, all of
the services used including the printer would experience confidentiality violations. A
classic example of a confidentiality attack is the ping sweep.

o None (allowed action): This represents no state effect. Some attacks begin with a step
that is a legal user activity. In this event, that step has no detectable state change.

• Performance Effect: This column is used to describe the performance change that occurs on
the victim as a result of an attack.
o Timeliness: A measure of how fast an output is generated based on a given input [8].
o Precision: This is how much output is produced for a given input [8]. The amount of

output should always be 100% of the expected output. Certain conditions can cause
values of other than 100% output. For example, the resource being used could crash in
the middle of an operation, resulting in only a small portion of the expected output being
produced. As a further example, if an employer is using a key logger, than every

 16

keystroke produces at least 200% of the expected output by the user, one copy of the
keystroke for the application, and one copy for the logger.

o Accuracy: A measure of how good an output is when related to the content quality of the
expected output [8]. One method of measuring this is through a distance value between a
computed checksum for the current data stream and the original (expected) data stream
[8]. An example of an attack effecting accuracy would be a man in the middle attack,
where the packet MAC and/or IP addresses are modified.

o None (allowed action): This represents no performance effect. Some attacks begin with a
step that is a legal user activity. In this event, the step has no detectable performance
change.
In keeping with fault modeling theory, our classification is ordered in terms of cause and

effect. The overall incident begins with a threat, followed by an attack. A threat is composed of
the three columns: objective, propagation and attack origin the attack includes action,
vulnerability, asset, and state and performance effects. Additionally, the first six columns
indicate the cause, while the last two the threat.

This classification scheme takes the form of checklist taxonomy and largely supports and
extends the work done by Howard and Longstaff [9]. It is easy to understand, modify and extend.
The relationship between cause and effect within an attack is clear. Beyond that, the relationship
of the threat and attack within the overall incident is clear as well. Some of the columns in the
classification scheme are very high level, and could be broken down into more elements, or even
sub-lists. For our purposes of separating cyber-attacks into domains, the high level
categorizations are sufficient.

It is important to note that in this format, not all possible combinations of factors make
sense. Obviously, for any attack that is being classified, combinations of factors that make sense
and describe the attack should be selected. There are at least two ways in which to employ this
system to classify attacks. The first is to traverse all of the lists and iteratively select all the
factors from each category that are descriptive of the attack. Using this method produces results
that are unsuitable for taxonomy, but are sufficient for work involving ontology. The second
method is to refine the attack into its constituent parts such that each part possesses only a single
entry from each of the lists. This method does produce results that can be put into taxonomy.

We give four example attacks to show how attacks are classified using our classification
system in Table 3. Note how the classification factors extracted from each example can be
tabulated for comparison. We give descriptions of each of these four attacks below, along with
explanations regarding their classification in Table 3.

 17

Table 3. Example of cyber-attack classifications in table format

Attack Name Objective Propagation Attack Origin Action Vulnerability Asset State Effect Perf Effect

UDP Storm Any Human Remote (Single
Source) Flood Specification /

Design Network Availability Timeliness

Slammer Worm Cracking Autonomous Remote (Single
Source) Copy Implementation Process Integrity Accuracy

Slammer Worm Cracking Autonomous Local Execute Specification /
Design System Integrity Accuracy

Slammer Worm Cracking Autonomous Local Scan Specification /
Design Network Availability Timeliness

Database Insider:
Reconnaissance

Professional Crime
/Corporate

Rivalry/Vandalism
Human Local Probe Specification Data Availability Timeliness

Database Insider:
Data Collection

Professional Crime
/Corporate

Rivalry/Vandalism
Human Probe Read Specification Data Confidentiality&

Availability Precision

BGP route isolation
attack

Terrorism /Corporate
Rivalry Human Remote (Single

Source)

Spoof
/misdirect

/delete
/terminate

specification Network Availability
/integrity

Timeliness
/precision

3.2.1.1 UDP Storm

The first cyber-attack is called UDP Storm [10]. In this case, the attacker has learned of
two vulnerable machines that will be his victims. The attacker sends out a spoofed packet to the
echo port of victim A that appears to come from the echo port of victim B. When victim A
receives the packet it responds with an echo-reply to the echo port of victim B. Victim B
perceives the packet from A as an echo-request, and sends out an echo-reply to victim A. A then
replies to B and this cycle continues until one of the echo services is shut down.

This attack can be executed by anyone who has access to one of many publicly available
packet spoofing tools, some knowledge of the fields in a UDP packet, and minimal computer
hardware. This is a low enough set of requirements to select Any from the Objective source
column of the taxonomy. A single human being starts the attack process, and the point of origin
for the packet that triggers the UDP loop comes from a single, remote location. So we select
Human from the Propagation category and remote (single source) from the Attack Origin
category. This attack is a little unusual in that while only a single packet is sent by the attacker, it
creates a packet flood on the network. We select Flood from the action category since that is the
attackers intended action. The attacker is taking advantage of a vulnerability in the design of the
UDP echo server to create this packet flood, i.e. the designers did not anticipate this kind of
abuse and did not include a mechanism to avoid it. Hence we select Specification/Design from
the vulnerability category. Through use of the packet flood, the attacker is attempting to increase
the ratio of attacking (flood) packets to normal traffic on the network, so we select Network from
the Asset category. The attacker changes this ratio by producing a large enough packet flood to
reduce the available network bandwidth, so we select Availability from the State effect column.
When this ratio gets high enough, the amount of time the network spends carrying legitimate

 18

data is reduced, and the legitimate traffic begins experiencing delays. Thus we select Timeliness
from the Performance Effects category.

3.2.1.2 Slammer

The second example is an Internet worm called Slammer [11]. This worm spreads from

an infected host by sending out UDP packets to port 1434 at random IP addresses. Each packet
contains a buffer overflow attack affecting Microsoft SQL Server 2000, and a complete copy of
the worm. When the packet hits a vulnerable machine, a buffer overflow occurs, and this allows
the worm to execute on the new victim. Once executing on the new victim, the worm installs
itself, and then begins sending out packets to try and locate more hosts to infect.

We have found that worms are best classified by iterating through the classification
scheme until all of the details of the attack are expressed. This worm essentially operates in three
stages (infect, execute and spread) so we expect to iterate through the classification scheme three
times. Based on the skill level involved to implement a worm attack, and the fact that there is no
obvious political or financial gain, we consider this to be a cracking Objective with autonomous
Propagation. The buffer overflow attack originates at a single remote location relative to the
victim machine, and we therefore select Remote (Single Source) from the Attack Origin menu.
The first action taken by the worm is to copy itself from the attacker to the victim machine, and
this is done by exploiting the implementation (buffer overflow) vulnerability in MS-SQL Server
Process. From that information we select Copy and Implementation from the Action and
Vulnerability categories respectively, and process in the Asset column. This breaches the
integrity of the SQL Server process, and affects the accuracy of its output. That is, the SQL
Server process is now under the control of Slammer and will output what the worm tells it to. We
therefore select integrity from the State effects and Accuracy from the Performance Effects
categories.

We now iterate for the next part of the worm, which takes place on the local machine
(victim). Since the attack is now coming from the local system, we select local from the Attack
Origin category. At this point, Slammer executes, taking over a process on the victim and we
select Execute from the Action category. This ability to execute takes advantage of the fact that
the worm is running in the context of the SQL Server process, and the action is allowed by the
system specifications. Thus we select Specification/Design from the vulnerability category. The
worm is employing the resources of the system it is executing on, and so we select system from
the Asset category. When Slammer accesses the system resources, this is a violation of the
system integrity, as the worm should not have the privileges to access said resources. This illegal
access changes the accuracy of the system because slammer is misidentified as being part of the
MS-SQL Server. On this basis, we select Integrity and Accuracy from the State and Performance
Effect categories respectively.

In the final iteration, the attack continues to come from the local host, but now Slammer
is using the local host to scan for new victims. From these activities, we select Local from the
Attack Origin category, and Scan form the Action category. Slammer is operating as the MS-
SQL process, and as such, the OS specification continues to allow it to run. So again, we select
Specification/Design from the Vulnerability category. From our local point of view on the
victim, the worm is now sending out a large amount of network traffic for its scans. This has the
effect of reducing available network bandwidth, and hence causing delays in legitimate network

 19

traffic. From this behavior we select Network from the Asset category, along with Availability
and Timeliness from the State and Performance Effect categories respectively.

3.2.1.3 Database Insider

For this type of attack, we consider a sample database insider attack. The key aspects of

this attack are connection by database user, reconnaissance queries by user, and data collection
queries by user. Because, in the database insider problem, much of the relevant information is
carried by subtle characteristics of the semantically complex query time series, there are many
variants of these aspects. For the insider case, we select Professional Crime, Corporate Rivalry
and Vandalism as Objectives. These attacks are propagated by humans from a local location. The
Actions are probe and read in each phase respectively. Both phases exploit a
Specification/Design vulnerability on a data Asset. Both phases cause an availability State Effect
due to user actions on the system. The second phase also breaches confidentiality. For
performance effects, we select Timeliness in phase one and Precision in phase two.

3.2.1.4 BGP Route Isolation

A network isolation attack ultimately manifests as complete loss of connectivity to one or

more prefixes. The goal of the adversary is to prevent any communication to some victim
network. Often, the real target of such an attack is some enterprise or organization within some
larger autonomous system. However, because these attacks are carried out against the AS at the
prefix level, there is often collateral damage to nearby (in the addressing sense) networks within
the same AS. For the purpose of the following analysis, we consider the entire AS to be the
victim AS, and defer issues of intra-domain network isolation to future work. The adversary
must have access to the control plane of interdomain routing to be able to mount many of the
attacks discussed in this section (e.g., is able to force an AS to act maliciously). Given our
observation of the relatively poor security practices of many ASes, this does not seem to be
unreasonable. We refer to the AS acting maliciously as the adversary AS.

The adversary has several ways to affect the reachability of an AS. Firstly, the adversary
can hijack the prefix by claiming to be the origin of the victim’s prefixes. Note that because both
the victim and adversary AS both continue to announce the prefix, the effect of the attack will
only affect those ASes that find the path to the adversary AS to be better (e.g., has shorter path).
Because malicious announcements are only propagated to those parts of the network to which
they will be the “best origin”, sensors should be distributed as many points in the network as is
possible.

The adversary can also manipulate the paths through the network to isolate the victim. In
the simplest case, the adversary can route all traffic through its AS. The adversary AS could
further drop all packets to the network. Other manipulations of BGP can achieve the same effect.
The adversary can prevent convergence of the path selection by inserting and removing
seemingly good paths, or simply by preventing the propagation of real paths.

Lastly, the adversary can disconnect the AS from the network by physically severing the
links between the AS and the larger Internet. Known historically as the backhoe attack, these
attacks obviously are beyond the ability of any sensor network to thwart. However, sensors may

 20

be able detect the existence of link severing. Interestingly, link cutting results in many of the
same interdomain routing behaviors as the origin and path manipulations described above.

Malicious
AS

Victim
AS

Internet
Core

Host A Host B

BGP Speakers

(1)

(2) (3)

(4)

(5) (6)

Figure 5. A simplified interdomain routing environment.

Figure 5 presents a view of a simplified network environment. We present only as much

of the routing infrastructure to motivate the isolation sensor infrastructure environment. For
example, the adversary and victim ASes are presented as stub-ASes, but this is not necessarily
the case (e.g., they may transit traffic). Also, there may be any number of other ASes
participating in the creation and distribution of routing data. We simply denote this set of ASes
as the Internet core. Note also that BGP speakers 2 and 3 and hosts 5 and 6 represent a
multiplicity of hosts and nodes upon which we can place sensors.

To classify this attack, we select the following for each column in Table 3: Objective:
Terrorism/Corporate Rivalry, Propagation: Human, Attack Origin: remote (single source),
Action: spoof/misdirect/delete/terminate, Vulnerability: specification/design, Asset: network,
State Effect: availability/integrity and Performance Effect: timeliness/precision.

3.2.2 Classification Trees

Cyber-attack classifications can be depicted in a tabular format as shown above in Table

3, or expanded into a tree structure. The tabular system allows this information to easily be
stored in a database, but the tree structure allows quick visual comparisons, and depicts the
structure of the cyber attack sub-domains. We employed the tree structure to select representative
cyber attacks from each of the sub domains revealed by the categorization scheme. A portion of
our tree can be seen as an example in Figure 6.

 21

Figure 6. Example Classification Tree

 Threat → Agency → Origin → Action → Vuln. → Target → State → Perf. → Attack
 Any
 Autonomous Virus / Worm
 Local
 Copy
 Specification / Design
 Network
 Availability
 Timeliness
 Bugbear.B@mm (Part G - mail/infect other victims) [18]
 Love Letter worm (Part E - mail/infect other victims) [14]
 SoBig (Part E - mail/infect other victims) [15]
 W32.HLLW.Fizzer@mm (Part I - mail/infect other victims) [16]
 W32.Mimail.A@mm (Part F - mail/infect other victims) [17]
 W32.Welchia.Worm (Part G - infect other victims) [19]
 System
 Confidentiality
 Precision
 W32.Mimail.A@mm (Part E - relay information about victim) [17]
 Integrity
 Accuracy
 SoBig (Part F - Download and execute adjunct files) [15]
 W32.Welchia.Worm (Part C - execute, install on, and Patch victim) [19]
 Delete
 Specification / Design
 System
 Integrity
 Accuracy
 W32.Welchia.Worm (Part E - Remove W32/Blaster) [19]
 Eavesdrop
 Specification / Design
 System
 Confidentiality
 Precision
 Bugbear.B@mm (Part F - relay key log activity from victim) [18]
 Execute
 Specification / Design
 System
 Integrity
 Accuracy
 Bugbear.B@mm (Part C - execute and install on victim) [18]
 Love Letter worm (Part C - execute on victim, disseminate within file system.) [14]
 Slammer / MS-SQL Server Worm (Part B - execute on victim) [12]
 SoBig (Part C - execute and install on victim) [15]
 W32.HLLW.Fizzer@mm (Part C - execute and install on victim) [16]
 W32.HLLW.Fizzer@mm (Part E - open back door on victim) [16]
 W32.HLLW.Fizzer@mm (Part G - disseminate on victim) [16]
 W32.Mimail.A@mm (Part C - execute and install on victim) [17]
 Scan
 Specification / Design
 Network
 Availability
 Timeliness
 Slammer / MS-SQL Server Worm (Part C - scan/infect other victims) [12]
 Remote (Single Source)
 Copy
 Implementation
 Process
 Integrity
 Accuracy
 Slammer / MS-SQL Server Worm (Part A - find and infect victim) [12]

 Human
 Remote (Single Source)
 Flood
 Specification / Design
 Network
 Availability
 Timeliness
 UDP Storm [1]

 22

What follows is a brief description of the attacks in the example tree. It is important to
note that we view the sequence of events and effects from the victim machine. As a result worms
often manifest as an incoming attack, and then after establishing themselves on the victim, an
outgoing attack.

3.2.2.1 Love Letter

The Love letter worm is primarily an email worm, but it spread by other vectors as well.

It is a VBS script, so it can easily be picked up from any infected location. We have broken this
cyber attack into five functional stages. In the first stage, a remote host either locates the victim
from a stored email address on the infected host, or infects a file that is of interest to the victim.
Love Letter then copies itself to the victim machine either through an infected email sent to a
user, or via a file downloaded by a user. In the second stage a user on the victim machine is
mislead into opening and starting the attachment or file containing the Love Letter worm. The
third stage occurs when the worm begins executing, and installs itself on the victim machine.
The worm then begins disseminating on the new host, replacing various script files it finds with
copies of itself, possibly adding a script to mIRC clients, and updating the start page for explorer.
In the fourth stage, the worm reads the address book from the victim machine. In the last stage,
the Love Letter emails copies of itself to all of the addresses found in stage four and this may
have consequences for network bandwidth [12].

3.2.2.2 SoBig

The SoBig worm spreads strictly by email. We have broken this cyber attack into six

functional stages. In the first stage, SoBig is operating on a remote system, has located the
victim from an email address read from that remote machine, and sends out an infected email
that is received by a user on the victim machine. In the second stage, a user on the system is
misdirected into opening the attachment containing SoBig. Then, in the third stage, the worm
executes and installs itself on the victim machine. In the fourth stage, the worm scans the victim
machine for email addresses. In stage five, SoBig begins propagating by sending email to the
addresses found in stage four and this may have consequences for network bandwidth. SoBig
can switch in and out of its last stage where it downloads and executes arbitrary files. This has
been used to steal confidential information, set up spam relays, and may be used as a method of
updating the virus [13].

3.2.2.3 W32.HLLW.Fizzer@mm

Fizzer is primarily an email worm although it will try to spread through the KaZa

network by infecting files in the KaZa shared folder. We have broken this cyber attack into nine
functional stages. In stage one, the worm locates a victim either from an email address stored on
the infected host, or infects a file that is of interest to the victim. Fizzer then copies itself to the
victim ether by sending an email to a user, or via a file downloaded by a user on the victim
machine. In stage two, a user on the victim machine is misdirected into opening the infected file
or attachment. In stage three, Fizzer executes and installs itself on the system. In the next stage,
Fizzer will attempt to terminate any anti-virus programs that are on the system. In stage five, the

 23

worm begins the process of opening back doors to the system. This includes connecting to chat
rooms (IRC and AOL) to listen for instructions, running as an http server, opening additional
ports for connections, and looking for updates. In stage six, Fizzer begins logging keystrokes. In
the next stage Fizzer disseminates on the victim, infecting any KaZa shared files that it can. In
stage eight, Fizzer scans the victim’s machine for email addresses. Finally, in the last stage, the
worm begins propagating by email, using the addresses discovered in stage eight and this may
have consequences for network bandwidth [14].

3.2.2.4 W32.Mimail.A@mm

The Mimail worm spreads strictly by email and we have broken this cyber attack into six

functional stages. In stage one the worm is has located a victim from an email address stored on
the infected host, and sent a copy of itself to the victim in an infected email attachment. In stage
two, a user on the victim machine is misdirected into opening the infected email attachment. In
stage three, Mimail executes and installs on the victim. In stage four the worm scans the victim
machine for email addresses that it can use for dissemination. In stage five, Mimail begins
capturing data from certain desktop windows on the victim, and relaying that data to its designer
via email. In stage six, the worm begins emailing itself to other potential victims (the addresses
found in stage four) [15].

3.2.2.5 Bugbear.B@mm

Bugbear is primarily an email worm but also has the capability of spreading over network

shares. Our analysis breaks this worm into seven functional stages. To begin, the worm is
running on a remote host and either emails itself to a user address found in list on that infected
host, or the user on the local (victim) machine has unknowingly downloaded a file infected by
the worm. In the next stage, the user is misdirected into opening the infected email or file. In the
third stage, Bugbear executes and installs itself on the victim machine. Once stage three is
complete, Bugbear spans several worms to execute each of the following stages independently.
In stage four, the worm disseminates on the victim, infecting certain files located on the local
victim and connected network shares. In stage five, Bugbear opens a back door to the system,
and begins listening for commands. In stage six, the Bugbear starts a key logger and periodically
sends the log to its creator. In the final stage, the worm scans the victim machine for email
addresses, and sends out copies of itself via email to the addresses it finds [16].

3.2.2.6 W32.Welchia.Worm

Welchia is an Internet worm that is fully automated and exploits buffer overflows to

spread. For purposes of classification, we have identified seven functional stages in this worm.
During stage one of this worms cycle, it uses a ping scan to locate potential hosts. In stage two,
Welchia locates a potential host, and exploits a buffer overflow implementation vulnerability in
DCOM RPC (or WebDav), to download a copy of itself and the tFTP program from the
attacking system. In the third stage, the worm executes on the new victim, where it downloads
and installs the RPC patch from Microsoft. In the fourth stage, Welchia reboots the victim
machine as part of the patch installation procedure. In stage five, Welchia will halt the blaster

 24

worms process if it is running, and delete blaster.exe thus removing any blaster infection. In
stage six, blaster will begin outbound ping scans for new hosts. In stage seven, blaster has
located a potential remote host and tries to infect the new machine [17].

3.2.2.7 Slammer / MS-SQL Server Worm

Slammer is described in the classification table example from the previous section.

3.3. Attack Profiling

From our attack classification research, we chose 8 attacks that fit a variety of different

fields in our classification table. We created profiles for these attacks.
An attack profile takes the form of a cause-effect chain or network of activities, state

changes, and performance impacts with resource-process interactions and activity-state-
performance interactions throughout the course of an attack scenario. Attack profiling will help
understand attacks and how they can be predicted using observable points, each of which is made
up of a data, feature and characteristic (DFC). Each node in the cause-effect network of each
attack profile will become a candidate observable point.

Based on the activity-state-performance changes, observable points can be selected such
that monitoring the observable points will be useful in predicting the attack. The observable
points can be an activity, a state change or a performance impact anywhere along the cause-
effect chain for the attack. For each attack, based on the knowledge of the observable points,
computer data that can be used to identify/predict the attack, its feature and characteristic can be
suggested.

The following definitions and explanations are provided to explain how we profile an
attack. After this, we profile one attack with further explanation.

Data: The raw data collected and monitored.
Feature: The measure from the data, such as individual observation, mean, variance,

probability distribution, covariance, auto-correlation, dependency, stationarity and chi-square
distance.

Characteristic: The characteristic of a given feature that enables the distinction of an
attack from normal behavior, such as shift, trend (i.e., cyclic and seasonal), drift (i.e., upward and
downward), intermittent spike or bump, and change (step change, spike, exponential change,
slope change, sine wave, square wave, etc.), and changes in dynamic state, phase
synchronization, etc.

Sub-Indicator: Unique combination of DFC
Indicator: Composed of one or more sub-indicators
Observation: One or more indicators to uniquely identify an attack.
• If indicators have more than one sub-indicator, then all sub-indicators are needed to

identify the indicator
• If observations have more than one indicator, then each indicator independently

identifies the observation.
• Indicators will have unique ID numbers. We are developing a novel numbering

scheme to uniquely classify indicators. The unique ID for each indicator of an

 25

observation will be based on the indicator’s DFC, and where the data is located
(including protocol/log and physical location of collection).

Table 4 illustrates the possible variations of indicators and sub-indicators an observation
may contain.

Table 4: Illustration of Profile

Observation Indicator Data Feature Characteristic
A 1

 B 2
3 C 4
5

 D 6

From Table 4, we note the following:

• Observation A has only one indicator 1.
• Observation B has one indicator 2, which is made of two sub-indicators.
• Observation C has two indicators 3 and 4.
• Observation D has two indicators 5 and 6. Indicator 6 has two sub-indicators.

Data dependence, Spatial, temporal and causal relationships are captured, in the form of
formulas. An attack formula contains the spatial, temporal and causal relationships required to
detect a specific attack.

Data dependence relationship: If the same data set is used to identify more than one
observation, then these observations have the data dependence relationship. For ex: If C, D and E
are all observations made on the same data source, they have the data dependence relationship.

Spatial relationship: Based on locations, such as host (L1), router of hosts network (L2),
intermediary network’s router (L3), BGP routers AS1, AS2 and AS3.

Temporal relationship: Relationship based on time of occurrence of observations. For
ex: A happens before B

Causal relationship: If one observation is the cause for another, a causal relationship
exists. For ex: A is the cause for B and C.

Formula to represent the attack: This formula combines the spatial, temporal and
causal relationships of an attack. A particular attack formula can be used to specify how to
design a sensor to detect that attack. To detect an observation, which has two/more indicators, we
could use any/all of the indicators. This is represented by an OR (|) in the formula. Spatial and
temporal relationships are captured in the location (l) and time (t) values in the formula. Arrows
in the formula indicate a causal relationship.

Next, we describe the development of an attack profile through and example and then
profile several attacks as examples. Each attack will have 3 pieces of information: Diagram of
observations, attack profile, and formulas: Data Dependency and Spatial/Temporal/Causal.

 26

To describe how this information is displayed, we use the Apache2 Web Server attack as
an example. The Apache2 attack is a denial of service process attack. It attacks the web server
process by flooding it. In this attack an attacker sends a request with many http headers. If the
server receives many of these requests it will slow down, and may eventually crash. The attack is
most effective when all the headers are the same. This causes a non-linear consumption of
memory, and can quickly overwhelm the available resources [18].

1. Outline of observations (see diagram in following section)

A HTTP packets with large headers
B Multiple HTTP packets requesting same file.
C HTTP requests from one source arrive unusually fast.
D Comparatively high memory util by web server process
E Comparatively high CPU util by web server process
F More HTTP requests arrive than are serviced
G Web server response time increases

2. Attack profile

The profile for the Apache attack is shown in Table 5, where L1 = observed at victim

machine and L2 = observed at victim’s router. In later profiles, L3 = observed on the network.

 27

Table 5. Apache Web Server Attack
OBS Indicator Data Feature Characteristic

l1 EWMA of HTTP GET message header size Chi-squared distance Step change

l2
EWMA of HTTP GET message header size with
same DEST IP Chi-squared distance Step change

l1
EWMA of similarity score of pairwise observations of
filename in HTTP GET messages Chi-squared distance Step change

l2
EWMA of similarity score of pairwise observations of
filename in HTTP GET messages with same DEST IP Chi-squared distance Step change

l1
EWMA of similarity scores of InterArrival Time of
HTTP GET messages from same SRC IP Chi-squared distance Step change

l2
EWMA of InterArrival Time of HTTP GET messages
from same SRC IP with same DEST IP Chi-squared distance Step change

D l1
EWMA of ratio of (Web server memory usage/Sum of
all other processes memory usage) Chi-squared distance Steady increase

E l1
EWMA of ratio of (Web server CPU usage/Sum of all
other processes CPU usage) Chi-squared distance Steady increase

l1
EWMA of Ratio of count of HTTP GET/POST
messages Chi-squared distance Steady increase

l2
EWMA of Ratio of count of HTTP GET/POST
messages to/from same IP Chi-squared distance Steady increase

l1
EWMA of difference in arrival times of GET and
corresponding POST HTTP messages Chi-squared distance Steady increase

l2
EWMA of difference in arrival times of GET and
corresponding POST HTTP messages to/from same
IP

Chi-squared distance Steady increase
G

A

B

C

F

Data collection details

We include data collection details to show how we can collect the required data for an

observation. This full table is not included here.

Table 6 only shows an example for reference. The indicator numbers correspond to

indicators in the attack profile and will be unique for each indicator (indicators are reusable
across attacks).

 28

Table 6. Example data definitions

Indicator Data Data Elements

HTTP message first header line begins with GET 1 EWMA of HTTP GET message
header size HTTP message header size

HTTP message first header line begins with GET
HTTP message header size

2
EWMA of HTTP GET message
header size with same DEST

IP
IP packet header DEST has same IP address
HTTP message first header line begins with GET

3
EWMA of pairwise

observations of filename in
HTTP GET messages HTTP message requested file string

HTTP message first header line begins with GET
HTTP message requested file string 4

EWMA of pairwise
observations of filename in
HTTP GET messages with

same DEST IP IP packet header DEST has same IP address
HTTP message first header line begins with GET

5
EWMA of InterArrival Time of
HTTP GET messages from

same SRC IP
HTTP message header field contains "From: <same
user>"
HTTP message first header line begins with GET
HTTP message header field contains "From: <same
user>"

6

EWMA of InterArrival Time of
HTTP GET messages from

same SRC IP with same DEST
IP IP packet header DEST has same IP address

HTTP message first header line begins with GET
7

EWMA of difference in arrival
times of GET and

corresponding POST HTTP
messages

HTTP message header begins with POST <same user
socket>
HTTP message first header line begins with GET
HTTP message header begins with POST <same user
socket>
GET messages to DEST IP

8

EWMA of difference in arrival
times of GET and

corresponding POST HTTP
messages to/from same IP POST messages from SRC IP = DEST IP of previous

row

3. Attack formulas (Data Dependency/Spatial/Temporal/Causal)

***Note: Here we show the entire derivation of the relationship formulas in steps A-E.
On the profiles, we will only show A and E.

A. Data dependent relationship:
This relationship is when multiple observations are made on the same data.

Let X: A set of attack packets on the network, going to the victim. Then,
{xi , xj | A(xi), B(xi , xj), C(xi , xj) } ∀ xi , xj ∈ X, where xi precedes xj;

• A(xi) means observation A is made on data element xi.
• B(xi , xj) means observation B is made on the pair (xi , xj). In this example, we look

at pair wise observations of filename. Thus, we need both xi and xj
• Similarly, C(xi , xj) is for inter arrival times of two successive packets.

B. Spatial relationships:

 29

A(l1) ∧ A(l2) , B(l1) ∧ B(l2) , C(l1) ∧ C(l2), D(l1) ∧ D(l2), E(l1) ∧ E(l2), F(l1) ∧ F(l2)¸ G(l1) ∧ G(l2)
∧: Observation A is observed at both L1 and L2. Either L1, or L2, or both could be
extracted to indicate the observation.

C. Temporal relationships:
A(ti…j) , B(ti…j), C(ti…j), D(ti+1…j+1), E(ti+1…j+1), F(ti+1…j+1), G(ti+1…j+1), where 0 ≤ ti < tj

• Time is represented by t. The subscripts, when compared to one another, give the
temporal relationships of the observations.

D. Causal relationship:
The symbol -> is used to indicate: “causes (verb)”:
(A, B, C) -> (D, E) -> (F, G)
E. Formula to represent the attack:

This formula is derived from the spatial/temporal/causal formulas. In the case where an
observable has two indicators and either one/both can be used to detect the attack, then we say
that they have the OR (|) relationship, for purposes of detection. ∧ indicates an AND relationship
between observations. So, in the following formula, A and B and C cause D and E which in turn
causes F and G:

[A(ti…j , l1) | A(ti…j , l2)] ∧ [B(ti…j , l1) | B(ti…j , l2)] ∧ [C(ti…j , l1) | C(ti…j , l2)]
↓

[D(ti+1…j+1, l1) | D(ti+1…j+1, l2)] ∧ [E(ti+1…j+1, l1) | E(ti+1…j+1, l2)],
↓

[F(ti+1…j+1, l1) | F(ti+1…j+1, l2)] ∧ [G(ti+1…j+1, l1) | G(ti+1…j+1, l2)]

3.3.1 Graphical Representation of Observations

Activity-state-performance interactions are explained in the form of a diagrammatic
cause-effect chain. Pre attack phases are indicated for each attack, since predicting an attack is
most useful in the pre attack phase itself. Based on the activity-state-performance interactions,
possible observable points are also indicated.

3.3.1.1 Apache2 Attack

This attack is described in our example above. Here we include the graphic of the cause-
effect chain for this attack. Figure 7a describes the pre-attack phase which includes a port scan.
We profile this step separately in the NMAP scanner below. Figure 7b is the attack phase of the
Apache2 cause-effect profile graphic.

 30

3.3.1.2 Dictionary attack

A dictionary attack is a remote-to-local system attack. It refers to breaking a cipher, or
obtaining a password, by running through a list of likely keys, or a list of words. For example,
one can 'break' a password on a computer in an English speaking country by encrypting each of a
list of English words and comparing each encryption against the stored encrypted version of
users' passwords. Since users often choose inappropriate (i.e. easily guessed or broken)
passwords, this has historically succeeded about 4 times out of 10 when a reasonable list is
used. In the case of a cipher, if keys are suspected to be words, the same technique can be used
to break messages encrypted with it [8]. For the purpose of this attack profile, we assume that
words are tried in the alphabetical order and with constant time between attempts. Figure 8
shows the Dictionary attack.

a) Pre attack phase of Apache

State 1:
Victim running apache
web server < 1.3.2
version

Activity 1:
Attacker identifies
victim, that victim
runs web server and
web server version.

Pre attack
Phase

 31

b. Attack phase of Apache

Figure 7. Apache2 Web Attack

 32

Figure 8. Dictionary Attack

State 1:
FTP server requiring
password authentication
running on victim

Activity 1:
Attacker initiates
dictionary attack program

Activity 2:
Program attempts to
authenticate using next
entry in the dictionary
database.

State 3: Confidentiality
of the application /file
system compromised.

Success

Failure

Observation B:
Subsequent password
attempts follow
dictionary pattern

Observation A:
Multiple login attempt
failures

State 0:
Attacker probes victim for
FTP service.

Observation C:
Time between
successive login
attempts follows pattern

Activity 4:
Abnormal use of
application by attacker

Observation D:
Successive attempts to
login use same
username

 33

3.3.1.3 Meteor FTP server DoS attack

Meteor FTP server DOS attack is a denial of service process attack. It attacks the ftp server
process by exploiting its buffer overflow vulnerability. Meteor FTP server has a buffer overflow
vulnerability. If a remote user enters username as USER followed by a random set of characters,
the FTP server will crash. This is because the long number of input characters does not get
handled properly in the server software [19]. Figure 9 shows this attack.

a) Pre-attack phase of Meteor FTP

State 1: The target machine is running a
meteor FTP service, which accepts
remote connection requests.

Activity 1: Attacker probes FTP port on
machine. Attacker verifies that Meteor FTP
service is running on the system.

Pre attack Phase

 34

b) Attack phase of Meteor FTP

Figure 9. Meteor FTP server DoS Attack

3.3.1.4 NetBus Trojan Attack

NetBus Trojan Attack is a remote-to-local system attack. In this attack, an attacker fools a
user into installing a copy of the netbus server on the victim machine. The method used by the
attacker to fool the user, is a Trojan containing both the netbus server and the game whack-a-
mole. The user is emailed the Trojan, or a link to it, and told that is a free whack-a-mole game.
When the user tries to run the whack-a-mole game, an installer starts which installs both the
game and the netbus server. The attacker can now use the netbus server as a backdoor to gain
access to the system with the same privileges as the user who installed netbus [8]. Figure 10
shows the Netbus attack.

Activity 2: The attacker connects to
FTP server and issues long username as
input.

Activity 3: The FTP server tries to access
out-of-bound memory region because of
this input.

Activity 4: The OS blocks this application
from accessing out of bound memory and
terminates the FTP server.

Activity 5: OS prints error
message to server indicating
the exception.

Performance 1: No file transfers take
place anymore through FTP.
Possible reduction in TCP packets/sec,
total packets/sec

State 1: FTP resource is
no longer available on
target machine.

Observation A:
Long username sent by
user

Observation B:
FTP server termination
from logs

Observation D:
FTP connection attempt
failures Observation C:

Fall in network traffic to
FTP server

 35

Figure 10. Netbus Trojan Attack

State 1:
User running
WinNT or other
vulnerable OS

Activity 1:
Attacker sends Trojan
along with a game as
an email/html link

Activity 2:
Victim installs the
game.(and
unknowingly the
Trojan server)

State 2:
Integrity of the victim
breached.

Activity 3:
Netbus client on the
attacker connects to
victim’s netbus server
at TCP port 12345

Observation C:
Attempt to connect to the new
port

Activity 4:
Attacker can do
miscellaneous actions
on victim through the
netbus server.

State 3:
Confidential information
can be accessed.

Activity 3:
Netbus server opens
TCP port 12345 on
victim.

Observation B:
Port opened for
connection by disallowed

Observation A:
New system service added to startup
automatically

 36

3.3.1.5 NMAP scanner

NMAP Scanner attack is a remote-to-local probe attack. Using a variety of ways, NMAP

can identify the OS running, the open ports, the services running on these ports, the version
numbers, what types of firewalls are in use and other features. NMAP probes the victim
machines with specially crafted IP packets. Based on the responses from the victim machines, it
can identify various features of the victim machine/network [8]. Figure 11 shows the NMAP
scanner.

Figure 11. NMAP Scanner

3.3.1.6 Smurf distributed DOS attack

Smurf is a distributed denial of service network attack. In this attack a network connected

to the Internet is swamped with replies to ICMP echo (PING) requests. A smurf attacker sends
PING requests to an Internet broadcast address. These are special addresses that broadcast all
received messages to the hosts connected to the subnet. Each broadcast address can support up to
255 hosts, so a single PING request can be multiplied 255 times. The return address of the
request itself is spoofed to be the address of the attacker's victim. All the hosts receiving the
PING request reply to this victim's address instead of the real sender's address. A single attacker
sending hundreds or thousands of these PING messages per second can fill the victim's network
link with ping replies, creating a bottleneck [20]. Figure 12 shows the Smurf attack.

State 1:
Victim machine/network
information is confidential.

Activity 1:
NMAP sends SYN packets to
all ports on victim.

Activity 2:
If victim port is open, it
replies with a SYN/ACK.
Else, it replies with a RST
packet

State 2: Confidentiality
of the ports
compromised.

Observation A:
TCP SYN packets received by all ports on
the victim

Observation B:
All open ports on the victim send TCP
SYN/ACK packets

 37

a) Smurf Pre-Attack phase

Pre attack activity 1: Attacker sends a
broadcast ICMP echo request to the
intermediary network.(and other networks)

State 1: The intermediary machines
have broadcast ICMP echo response
enabled

State 2: The router configuration of
the intermediary network does not
disable ICMP broadcast echo requests.

Pre attack activity 2: The network
replies to the ICMP echo request.
Attacker saves replying host addresses.

Pre attack
Phase

 38

b) Smurf Attack phase

Figure 12. Smurf Distributed DoS Attack

Performance Impact 2:
Victim’s router /intermediary
network’s router experience
high volume of ICMP traffic on
port.

Activity 2: All intermediary
machines receive the spoofed
packet with the victim as the source
IP address.

Activity 3: The intermediary
machines construct ICMP echo
responses to the request.

Activity 4: All the intermediary
machines send ICMP echo reply
packets to the victim.

Performance Impact 1:
Victim experiences traffic
congestion on its input port by
the flooding of ICMP echo
responses.
There will be a increase in
ICMP packets received.
There will be a decrease in the
TCP/IP packets sent/received
on the interface.

Activity 5: The victim’s input port is
flooded with ICMP echo responses
from the intermediary machines

Activity 1: Attacker sends spoofed
broadcast ICMP packet with source =
victim’s IP and destination =
intermediary network’s broadcast address

Observation A:
One broadcast ICMP
echo request packet
on intermediary
network

Observation B:
Increase in ICMP echo
reply packets addressed to
victim

Observation D:
Increased network
utilization at the
victim and router

Observation C:
More ICMP response packets
than request packets in router

Attack
Phase

 39

3.3.1.7 Database Insider

 This attack is described in the attack classification section. Figure 13 shows this attack.

Figure 13. Database Insider Attack

State 1: User trust compromised

Attack Phase

Observation B:
Reconnaissance queries
by user

Activity 1: Attacker probes for valuable
data by initiating queries.

Activity 0: Login to the database by a
trusted user

State 2: Availability compromised, by use
of shared resources

Performance 1: Timeliness
compromised, by use of shared resources

Observation C:
Data collection queries
by user

Activity 2: Attacker queries
database/extracts valuable information.

Observation A:
Connection by DB user

 40

3.3.1.8 BGP Route Isolation

This attack is described in the attack classification section. Figure 14 shows this attack.

a) BGP Route Isolation Pre-Attack Phase

b) BGP Route Isolation Attack Phase

Figure 14. BGP Route Isolation Attack

State 0: BGP on victims AS assumes the
route advertised by neighboring nodes are
correct.

Pre attack Phase

Activity 0: Attacker generates malicious
packets containing optimal BGP Attributes.

Activity 1: Attacker spoofs the prefix and
injects packets into the neighbor network.

Attack Phase

Observation A:
Anomalous Origin
Behavior

Activity 0: Attacker generates malicious
packets containing optimal BGP Attributes.

State 1: Network receives
prefix from the victim

Observation B:
Anomalous Path
Behavior

State 2: Network receives prefix
announcements from victim and attacker

Performance 1: Packet drop and
destination unreachable at victim

Observation C:
Reachability Failures

Observation D:
Anomalous User
Performance Behavior

 41

3.3.2 Profile Table and DFC Relationships

 The graphics created in the previous section allow us to view the observations associated
with an attack at an abstract layer. For a more comprehensive and detailed look at the attacks, we
create an attack profile based on the format given previously. Descriptions of these attacks are as
in the previous section. Here we give the attack profiles, along with the relationship formula for
our sample attacks. The attacks we are profiling are example attacks. The DFCs we extract are
based on current knowledge and previous work. Future research will result in enhancing the
features and characteristics of these indicators.

3.3.2.1 Apache2 Attack

This attack is explained in detail above, included as an example for the description of

profile tables and DFC relationships.

3.3.2.2 Dictionary attack

Table 7. Dictionary Attack
OBS Indicator Data Feature Characteristic

A l1
EWMA of Number of FTP log entries
with keywords "login failure" Chi-squared distance Step change

B l1
Series of values from Password field of
login attempt failures in <log> Sequence pattern

Follows alphabetical order of words in
dictionary. Ex: abacus, acme and
adjective

C l1
Interarrival times of login attempt
failures in <log> Temporal pattern of sequence Constant time

D l1
EWMA of similarity score of pairwise
observations of Username field of login
attempt failures in FTP log

Chi-squared distance Step change

Observations:
A Multiple login attempt failures
B Subsequent password attempts follow dictionary pattern
C Time between successive login attempts follows pattern
D Successive attempts to login use same username
Data dependent relationship:
Let X: A set of FTP log entries on the victim relating to Login failure attempts.
{xi , xj | A(xi), B(xi … i + k), C(xi , xj), D(xi , xj) } ∀ xi , xj ∈ X,
Where xi precedes xj, k is a threshold value to be determined.
Attack formula: [A(ti…j , l1) ∧ B(ti…j , l1) ∧ C(ti…j , l1) ∧ D(ti…j, l1)], where i <j

 42

3.3.2.3 Meteor FTP server DOS attack

Table 8. Meteor FTP DOS Attack
OBS Indicator Data Feature Characteristic

l1
Length of username field in FTP request
packet Individual observation Greater than a <threshold>

l2
Length of username field in FTP request
packet sent to victim Individual observation Greater than a <threshold>

l1a Windows application log Individual observation Has value "Access Violation at
<memory> Program Terminated"

l1b FTP server log Individual observation Has value "server process
terminated by operating system"

l1 EWMA of TCP packets/sec Chi-squared distance Step change

l2
EWMA of TCP packets/sec to FTP server's
IP address Chi-squared distance Step change

l1
EWMA of Count of TCP RST packets from
SRC_PORT = <ftp port> Chi-squared distance Step change

l2
EWMA of Count of TCP RST packets from
SRC_PORT = <ftp port> from victim IP Chi-squared distance Step change

D

C

A

B

Observations:
A Long username sent by user
B FTP server termination from logs
C Fall in network traffic to FTP server
D FTP connection attempt failures
Data dependent relationship
There is no data dependent relationship amongst the observations for this attack
Attack Formula:
[A (ti, l1) | A(ti , l2)] → [B (t j , l1)] ∧ [C(t j…k, l1) | C(t j…k, l2)] ∧ [D (t j…k, l1) | D (t j…k, l2)]
where i < j < k

3.3.2.4 NetBus Trojan Attack

Table 9. Netbus Trojan Attack
OBS Indicator Data Feature Characteristic

Windows security log individual observation has value "New Objects added to registry"
Windows security log individual observation has value "New system service started"
List of open ports on the host from <log> individual observation <port> added to the list

List of open ports on the host from <log> individual observation <port> opened by an application not in the
allowed list

l1 Port field of TCP SYN packet individual observation <port>
l2 Port field of TCP SYN packet sent to victim individual observation <port>

A

B

C

l1

l1

Observations:
A New system service added to startup automatically
B Port opened for connection by disallowed application on the host
C Attempt to connect to the new port
Data dependent relationship:
There is no data dependent relationship amongst the observations for this attack

 43

Attack formula: A (t i, l1) → B (t j, l1) ∧ [C (t k, l1) | C (t k, l2)]

3.3.2.5 NMAP scanner

Table 10. NMAP Scanner
OBS Indicator Data Feature Characteristic

l1a
EWMA of number of ports receiving TCP SYN
packets in time interval t Chi-squared distance Step change

l2a
EWMA of number of ports receiving TCP SYN
packets in time interval t on victim Chi-squared distance Step change

l1b
EWMA of number of ports receiving TCP RST
packets in time interval t Chi-squared distance Step change

l2b
EWMA of number of ports receiving TCP RST
packets in time interval t at victim Chi-squared distance Step change

l1c
EWMA of Ratio of count of TCP SYN to ACK
messages received Chi-squared distance Step change

l2c
EWMA of Ratio of count of TCP SYN to ACK
messages to victim Chi-squared distance Step change

l1d
EWMA of ratio of number of ports sending
SYN/ACK packets to ports sending RST packets Chi-squared distance Step change

l2d

EWMA of ratio of number of ports sending
SYN/ACK packets to ports sending RST packets
from victims IP

Chi-squared distance Step change

l1a
EWMA of number of ports sending TCP SYN/ACK
packets in time interval t Chi-squared distance Step change

l2a
EWMA of number of ports sending TCP SYN/ACK
packets in time interval t on victim Chi-squared distance Step change

l1b
EWMA of number of ports sending TCP RST
packets in time interval t Chi-squared distance Step change

l2b
EWMA of number of ports sending TCP RST
packets in time interval t on victim Chi-squared distance Step change

l1
EWMA of number of ports with TCP connections in
time interval t Chi-squared distance Step change

l2
EWMA of number of ports with TCP connections in
time interval t at victim Chi-squared distance Step change

l1a
EWMA of number of ports receiving a string from
NMAP list of probe strings in time interval t Chi-squared distance Step change

l2a

EWMA of number of ports receiving a string from
NMAP list of probe strings at victim in time interval
t

Chi-squared distance Step change

l1b
EWMA of number of ports sending a string from
NMAP list of match strings in time t Chi-squared distance Step change

l2b EWMA of number of ports sending a string from
NMAP list of match strings at victim in time inteval t

Chi-squared distance Step change

D

C

A

B

Observations:
A TCP SYN packets received by all ports on the victim
B All open ports on the victim send TCP SYN/ACK packets
C TCP connection established at all open ports on the victim

 44

D Subset of open ports receive one/more well known NMAP probes
Data dependent relationship:
There is no data dependence relationship among the list of NMAP observations
Attack formula:
[A (t i…j, l1) | A (t i…j , l2)] → [B(t i…j , l1) | B(t i…j , l2)], [C (t k…l, l1) | C (t k…l, l2)],
[D (t k…l, l1) | D (t k…l, l2)], where i < j < k < l

3.3.2.6 Smurf distributed DOS attack

Table 11. Smurf DoS Attack
OBS Indicator Data Feature Characteristic

A l3 Type field of broadcast ICMP packet Individual observation Has value 8 (Echo request)

l1
EWMA of interarrival time of ICMP
echo reply packets Chi-squared distance Step change

l2
EWMA of interarrival time of ICMP
echo reply packets to the same DEST Chi-squared distance Step change

C l2
EWMA of the ratio of ICMP rsp/sec to
req/sec at router Chi-squared distance Step change

l1
 EWMA of IP packets received/sec
from performance log Chi-squared distance Step change

l2
EWMA of IP packets received/sec
from the router's log Chi-squared distance Step change

B

D

Observations:
A One broadcast ICMP echo request packet on intermediary network
B Increase in ICMP echo reply packets addressed to victim
C More ICMP response packets than request packets in router
D Increased network utilization at the victim and router
Data dependent relationship:
There is no data dependence relationship among the list of NMAP observations
Attack formula: A (ti, l3) → [B (tj , l1) | B (tj , l2)] ∧ C (tj , l2) → [D (tj , l1) | D (tj , l2)]

 45

3.3.2.7 Database Insider

Table 12. Database Insider Attack
OBS Indicator Data Feature Characteristic

1 Time of connection and database user ID Individual observation Outside historical range

2 EWMA of duration of connection/session by user Chi-squared distance Step change

3 Number of tables outside historic range accessed
by user within time interval t Individual observation Greater than <threshold>

4 EWMA of InterArrival Time of queries from the
same user Chi-squared distance Step change

5 EWMA of queries selecting no data within time
interval t (i.e., requested data not found) Chi-squared distance Step change

6 EWMA of size of query text Chi-squared distance Step change

7 EWMA of ratio of SELECT queries to other queries
within time interval t Chi-squared distance Step change

8 EWMA of pairwise semantic distances between
relations and attributes of successive queries Chi-squared distance Step change

9 EWMA of Number of queries using stored
procedure in time interval t Chi-squared distance Step change

10 EWMA of Number of SQL constructs used in
queries in time interval t Chi-squared distance Step change

11 Number of tables outside historic range accessed
by user within time interval t Individual observation Below <threshold>

12 EWMA of Interarrival times of queries to same table Chi-squared distance Step change

13 EWMA of Number of queries using stored
procedure in time interval t Chi-squared distance Step change

14 Ratio of rows retrieved during session to total rows
in table Mean Increase

15 Ratio of columns retrieved during session to total
columns in table Mean Increase

16 EWMA of Interarrival times of queries Chi-squared distance Step change

17 EWMA of pairwise semantic distances between
relations and attributes of successive queries Chi-squared distance Step change

18 EWMA of number of SQL constructs Chi-squared distance Step change

B

A

C

Observations:
A Connection by database user
B Reconnaissance queries by user
C Data collection queries by user
Data dependent relationship:
There is no data dependent relationship amongst the observations.
Attack formula: A(ti…j, l1) → B(tk…l, l1) → C(tm…n, l1), where i <j<k<l<m<n

3.3.2.8 BGP Route Isolation

In this table we use AS with subscripts to indicate observations made at the AS points
identified in the description of this attack above.

 46

Table 13. BGP Route Isolation Attack
OBS Indicator Data Feature Characteristic

L2, AS1-3 Prefix field of BGP withdrawal Individual observation
(withdrawal) Has unexpected value

L2, AS1-3 Prefix and AS number of BGP update Individual observation
(update)

Has illegal/unknown prefix,
AS number

L2, AS1-3 Origin change distribution Prefix change distribution Non-fitting distribution

L2, AS1, AS2 BGP withdrawal Individual observation
(update) Expected path loss

L2, AS1, AS2 Path selection made in BGP update Individual observation
(update) Unexpected path selected

L2, AS1, AS2 Path change Path change distribution Non-fitting distribution

L2 Path selection made in BGP update Individual observation
(update) Sub-optimal path selected

L2, AS3 BGP update Individual observation
(update) Illegal AS traffic transiting

L2, AS1, AS2,
AS4

Traceroute data log Individual observation Has "network unreachable"
message

L2, AS1,
AS2,AS4 TCP connection state Connection results All new connections dropped

(FIN/RST)

AS4, L1 EWMA of UDP packets/sec from logs Chi-squared distance Step change

AS4, L1
EWMA of TCP connections failed/sec
from logs Chi-squared distance Step change

AS4, L1
EWMA of TCP connections reset/sec
from logs Chi-squared distance Step change

D

A

B

C

Observations:
A Anomalous Origin Behavior
B Anomalous Path Behavior
C Reachability Failures
D Anomalous User Performance Behavior
Data dependent relationship:
There is no data dependent relationship among the observations
Attack formula:
A (t i…j, l2) | A (t i…j, AS 1..3) → B (t k…l, l 2) | B (t k…l, AS 1...3) → C(tm…n , l 2) | C(tm…n , AS 1,2,4) ∧
D(tm…n , l1) | D(tm…n , AS 4)

3.4 Summary

In this section we have outlined our work to catalogue attacks on computer and network
systems. We use these tools to design sensor models for cyber attacks. In the next section we use
this knowledge of cyber attacks and conduct analysis to discover characteristics of each the
observable points of cyber attacks and noise.

 47

4. Characteristics of Cyber Signal and Noise

The cyber signal detection approach engages in the scientific discovery of DFCs for

cyber signal (attack data) and noise (normal data). We use attack profiling and data analysis
techniques to generalize the DFCs that exist in cyber signal and noise data. We also leverage
well-established signal detection models in the physical space (e.g., radar signal detection), and
verify them in the cyber space. With this foundation of information, we can build cyber signal
detection models that incorporate the characteristics of both cyber signals and noise. This enables
us to take the least amount of relevant data necessary to achieve detection accuracy and
efficiency. The cyber signal detection approach considers not only activity data, but also state
and performance data along cause-effect chains of cyber attacks on computers and networks. We
aim to achieve the detection adequacy lacking in existing intrusion detection systems.

To build a cyber signal detection model for detecting cyber attacks on computer and
network systems, we need to obtain an understanding of attack and normal data characteristics;
otherwise, we cannot have full confidence in detection accuracy, and we cannot achieve data
relevancy and have detection efficiency. With knowledge of attack and normal data (cyber signal
and noise) characteristics, we can easily leverage signal detection algorithms to build models if
discovered cyber signal and noise characteristics also appear in models of the physical domain;
or we can easily build new signal detection models using the methodologies of model building in
the physical domain if discovered characteristics are not found in the physical domain.

In this section, we provide descriptions, observation points and DFC tables for the six
attacks and one worm investigated in this study. We then show an example of generalizations of
observations across attacks. Next we provide an overview of signal detection in the physical
space including a literature review, summary of our findings, and mapping the physical space to
cyber space.

The remaining sections outline experiments and results for discovering cyber signal
characteristics. We describe the simulation and data collection of the six attacks (EZPublish
Confidentiality, NMAP Scanner, Netbus Trojan, Meteor FTP, IRC Chat Server Abuse and ARP
Poison) and one worm (Sobig) in our study. Next we give the results of our analysis to describe
cyber attack and noise characteristics and finally, conclude this section.

4.1. DFC for Attacks/Worm in this Section

For this study we experimented with six attacks and one worm. Three of these attacks are
described previously in this report: NMAP Scanner, Netbus Trojan and Meteor FTP. In this
section, we present the other three attacks and worm: EZPublish, IRC Chat, ARP Poison and
Sobig. We give each attack’s associated list of observation points and DFC table. For an in depth
look at the topics covered in this section, we refer to [21-24].

4.1.1 EZPublish Confidentiality Attack

We describe attacks as a series of observation points. For example, Table 14 shows the

observation points for the EZPublish attack.

 48

Table 14. EZPublish Observation Points

Observable point Observation
A File from restricted directory accessed
B File with system related extension accessed

We define each observation point in terms of the data under consideration and its feature

and characteristic to distinguish attacks from normal scenarios [21]. Table 15 shows the DFC for
the EZPublish attack [24].

Table 15. EZPublish DFC

OBS Location Data Feature Characteristic

L1 Filename of HTTP GET request Individual
observation

String match with
settings A

L2 Filename of HTTP GET request to
host

Individual
observation

String match with
settings

L1 Filename of HTTP GET request Individual
observation

String match with
.ini B

L2 Filename of HTTP GET request to
host

Individual
observation

String match with
.ini

 In the first column of Table 15, we see the letter of the observation that each DFC
corresponds to. In the next column, we see the location where the data is collected, L1 is the
victim (host) and L2 is a router in the victim’s network. The third column describes the actual
data we need to collect for this observation point. The fourth column is the feature we need to
extract from this data and the last column is the characteristic on the feature, which identifies this
observation point.

4.1.2 IRC Chat Server Abuse

 Table 16 gives the observation points for the IRC Chat Server Abuse attack.

Table 16. IRC Chat Observation Points

Point Observation
A Distrusted applications installed on client and

server
B New service starts on server machine
C New port opened for service on server
D Increase in TCP connections at server
E Ping packets from clients to server at regular

intervals

 49

 Table 17 gives the DFC for IRC Chat.

Table 17. IRC Chat DFC

Obs Location Data Feature Characteristic

L1 Application log Individual entry
Has value “IRC
chat server
installed” A

L2 Application log Individual entry
Has value “IRC
chat client
installed”

B L1 Security log Individual entry Has value “ new
service started”

C L1 Open ports on system List of ports New port added

L1 TCP connections/sec at
server

Exponentially
weighted moving
average

Step increase

D

L3 TCP connections/sec
with DEST = server IP

Exponentially
weighted moving
average

Step increase

L1 ICMP requests/sec at
server

Exponentially
weighted moving
average

Step increase

E

L3 ICMP requests/sec with
DEST = server IP

Exponentially
weighted moving
average

Step increase

4.1.3 ARP Poison

 Table 18 gives the observation points for the ARP Poison attack. Table 19gives the
DFC for ARP Poison.

Table 18. ARP Poison Observation Points

Observation
point Observation

A Updates received from different machines do not
match.

B Victim is unable to reach destination
C Outbound Network traffic reduces

 50

Table 19. ARP Poison DFC

OBS Location Data Feature Characteristic

L1 Target HA field of ARP Reply
packets received

String
Comparison of
values

All updates do
not have the
same value A

L2 Target HA field of ARP Reply
packets received

String
Comparison of
values

All updates do
not have the
same value

L1 Network interface:packet outbound
errors field in performance log

Exponentially
weighted
moving average

Step increase

B

L2

DEST MAC field of Ethernet
frames
- and -
Contents of ARP table

String
comparison of
values

Value in field
does not match
any entries from
ARP table

C L1 Network interface: Bytes set/sec
field from performance log

Exponentially
weighted
moving average

Step decrease

4.1.4 Sobig Worm
 Table 20 gives the observation points for the Sobig Worm. Table 21 gives the DFC for
Sobig. In The location column, L4 refers to the intermediate mail server involved in the attack.

Table 20. Sobig Observation Points

Observable
Point Observation

A E-mail infected with Sobig worm received in user’s mailbox
B New process, the Sobig worm, started by user
C New files created by worm
D New values added to the startup keys of the registry

E
New worm process starts and original worm process is
terminated

F New event created
G New threads created
H Higher CPU utilization as threads search for e-mail addresses

I
Higher file system activity as threads search for e-mail
addresses

J Increased network activity as threads send out infected e-mails
K Mail activity at mail server as infected e-mails arrives
L UDP packets sent to update servers

 51

Table 21. Sobig DFC

OBS Location Data Feature Characteristic

A L1

E-mail contained in the user’s mailbox Individual
observation

9 possible subject
lines, 9 possible
attachment file
names, and 2
possible body lines

B L1 Name of new process running Individual
observation

9 possible names

Filename of newly created file Individual
observation

“%Windir%
\winppr32.exe” C L1 Filename of newly created file Individual

observation
“%Windir%
\winstt32.dat”

Value of data added to registry key
HKEY_LOCAL_MACHINE\SOFTWARE
 \Microsoft\Windows\CurrentVersion\Run

Individual
observation

“TrayX”=
“%Windir%
\winppr32.exe
/sinc” D L1 Value of data added to registry key

HKEY_LOCAL_MACHINE\SOFTWARE\
 Microsoft\Windows\CurrentVersion\Run

Individual
observation

“TrayX”=
“%Windir%
\winppr32.exe
/sinc”

Name of old process terminated Individual
observation

9 possible names

E L1 Name of new process running Individual
observation

“winppr32.exe”

F L1 Value of event created Individual
observation

“TrayX”

G L1 9 new threads created Individual
observation

Thread count
increment

H L1 Comparatively high CPU utilization by
winppr32.exe

Mean Increase

I L1 Comparatively high file system utilization
by winppr32.exe

Mean Increase

L1 IP packets sent/sec from performance log EWMA Step increase

L2 IP packets received/sec and sent/sec from
the router’s log

EWMA Step increase
J

L4 IP packets received/sec from performance
log

EWMA Step increase

K L4 E-mails received/sec EWMA Step increase

L L1 Destination IP addresses and port used for
20 UDP packets sent

Individual
observation

20 IP addresses
over port 8998

 52

4.2 DFC Generalization from Profiling

 The DFC tables from attack profiling, along with additional attack profiles from [24],
give us a starting point for generalizing DFC for cyber attacks. Table 22 shows a sample of some
generalizations made on these attack profiles.

Table 22. Generalized DFC from attack profiles [24]

Generalized Description Attack

Attack Specific Description

The length of the buffer to hold the
packet header Apache attack HTTP packets with large headers

Apache attack Multiple HTTP packets requesting
same file Total similarity score from string

comparisons in all the fields of pair
wise packets UDP storm Identical packets sent/received by

victim machines
The access ratio of common files to

uncommon files Apache attack Multiple HTTP packets requesting
same file

Intensity ratio of incoming packets to
outgoing packets Apache attack More HTTP requests arrive than are

serviced

Nmap scanner TCP SYN packets received by all
ports on the victim

Netbus Trojan
attack

Attempt to connect to the new port
on victim

Smurf attack Increase in ICMP echo reply
packets to victim

Access ratio of common to
uncommon ports

IRC chat server
abuse

New port opened for service on
server

Same change in specific
performance object on two/more

hosts on the network
UDP storm Increased network traffic by

constant amount on both machines

Frequency ratio of common entries
to uncommon entries in the
Windows system/ security/

application log

Dictionary
attack Multiple login failures

Meteor FTP
attack Fall in network traffic to ftp server Ratio of incoming to outgoing traffic

volume per second Smurf attack Increased incoming traffic
Netbus Trojan

attack
New system service added to

startup automatically
String in system/ security/

application log indicating start/ end
of host /network application without

normal procedure Half life attack Client application terminated
abnormally

File from restricted directory EZPublish File from settings directory of

 53

accessed by non administrative user EZPublish application is accessed

File with system specific extension
accessed by non administrative user EZPublish

File with system specific extension
is accessed by non administrative

user

Host connection to untrusted remote
machine over the network Half life attack

Half life client connects with
untrusted half life server on the

network
Network data with code to open a

new shell on the system Half life attack Response has code to open a new
shell

Multiple processes started by same
parent process

Process table
attack

Multiple calculator processes
started by same user process

Registry key edited by user without
administrative privileges

Yaga user to
root attack

Unauthorized registry edit/New file
added

Yaga user to
root attack

New user added, not by usrmgr
service User added/removed to system by

process other than usrmgr service Yaga user to
root attack

user removed, not by usrmgr
service

Sudden failure seen in using a
system resource like network, files

and memory
ARP poison Victim is unable to reach

destination

 In Table 22, the first column generalizes the element that we monitor to detect an
observable point of one or more attacks. The second column shows which attack profiles include
this element, and the third column gives the attack specific observation for the element. By
generalizing in this way, we can identify general attack elements that occur and investigate their
frequencies to aid in developing sensors that can detect novel attacks.

4.3 Signal Detection Models

Once we have identified the DFC of a cyber attack signal, we need a model to detect it.

To this aim, we leverage well-established signal detection models in the physical space (e.g.,
radar signal detection), and verify them in the cyber space.

This section proceeds as follows. We first present a literature review of signal detection
in the physical space. We then summarize the feature extraction methods and detection models
discovered in our literature review. The section concludes with a subsection mapping physical
space, signal detection concepts to cyber signal detection in the form of DFC generalization and
analytical discovery through data mining and analysis techniques.

4.3.1 Physical Space Literature Review

We survey existing signal detection methods in the physical space to create a collection

of signal detection models. The search focuses on literature published in the years 1995 to 2004
(some literatures are unpublished). We find 163 papers from six different fields. This section
describes the literature search and definitions of DFC and signal detection model used in this

 54

study. The search includes six application areas and a theory area. Table 23 below summarizes
the number of papers we review in each area.

Table 23. Number of papers review in each area

Area Total
Biomedical & Health science 31
Earthquake & Planetary science 25
Economics, Finance, and Marketing Research 22
Manufacturing and Quality Control 28
Physical Signal Processing 39
Theory 28

Total 173

We conduct the search using various keywords depending on the area. Table 24 gives

examples of the keywords used for each area.

Table 24. Summary of keywords used in literature search
Area Key words used
Biomedical & Health
science

Feature Extraction, Detection, Feature Selection, Hypothesis Testing,
Noise Filtering, Pattern Recognition, Signal Detection, Signal Processing

Earthquake & Planetary
science

Detection & Statistical, Detection, Fault Detection, Signal Detection

Economics, Finance,
and Marketing Research

Detection & Statistical, Signal Extraction

Manufacturing and
Quality Control

Fault Detection & Fault Signature, Fault Signature

Physical Signal
Processing

Feature Detection & Statistical, Feature Extraction, Signal Detection,
Detection & Statistical, Signal Extraction, Detection, Radar & Signal
Detection, Radar & Statistical, Signal filtering, Data denoising

Theory Data Fusion, Feature Extraction, Signal Detection

We find that economics, finance, and marketing research focuses on time-series data,

with the goal of estimating (or extracting) the signal. Hence, most papers in this area only discuss
the estimation method, and hardly mention the testing method.

Upon reviewing each paper, we extract the DFCs and signal detection model. Most
papers contain all four elements but some provide only the DFC elements. We define these four
elements below in the context of our literature search. These definitions reiterate and expand the
definitions we give for attack profiling.

We define data as any variable of interest. For example, the data for detecting an
underground water signal is the underground water sound. Data for each signal detection model

 55

and attack type can be different. A special structure, form, or other attraction of the data is a
feature of the data. We can extract features via data transformation. Examples of feature range
from simple transformations such as raw data itself (no transformation required), mean, variance,
distribution function, any linear combination, or ratio, to more complex transformations such as
time series model, principal component function, Fourier transforms, or wavelet transforms.
Each feature has a unique characteristic, which is useful in detecting a signal. For instance,
characteristics of the mean can be a step or steady change. The characteristics that we wish to
detect in data may not be the same as characteristic of feature. For example, step change in
correlation coefficient implies a change in the data trend. Once DFC is defined a signal detection
model can be designed to detect a particular signal. Generally, a signal detection model can be
thought of as a process of making a decision – deciding whether or not the signal is present.
Table 25 gives an illustration of mapping physical signal detection into DFC and signal detection
model. Note that the characteristic shown in this table is a characteristic of the feature. Thus the
signal detection model is designed to detect the feature characteristic [25].

Table 25. An example mapping physical signal detection into DFC and model.

Data Feature Characteristics Signal Detection Model
Variable(s) of

Interest
EX Underwater

sound signal

Vector of summary
measures of selected
wavelet coefficients

EX Vector of mean
sum of squares
corresponding to
high frequencies.

Step change in
summary
measures of
selected wavelet
coefficients

An adaptive model using
recursive kernel
estimation of joint
distribution of sum of
squares of wavelet
coefficients. Any
outliers from this
kernel estimation are
flagged as signal.

4.3.2 Physical Space Signal Detection Models

In the physical space, we find that the steps in detecting a signal are as follows. Firstly,

data are processed by normalizing, scaling, or screening. Next the processed data are transformed
to a feature. The transformation and feature are selected such that the signal is amplified. Hence
the desired characteristic of signal can be detected easier and faster. Finally, a signal detection
model is applied to the feature extracted from the processed data. Figure 15 illustrates these
steps.

 56

Raw Data
Data

Processing

Feature
Extraction

Processed
Data

Decision
Detection

Model Features

Figure 15. Common procedures in signal detection

There are many transformation methods available. Each transformation method is

appropriate for a different kind of data and results in a different type of feature. Based on the
literature search, transformation methods can be grouped into six categories: no transformation,
simple transformation, regression based transformation, multivariate technique, transformation to
frequency domain, and statistical learning method. Table 26 summarizes these transformation
methods, features, and characteristics.

Table 26. List of all transformation methods, correspondent features, and characteristic.

Type of
Transform

ation
Feature Characteristic of Signal that we wish to detect

Any change from the template
Any change in the distribution
Change in absorption rate
Change in causality relationship
Change in clusters of data
Change in correlation pattern in the data
Change in data sequence
Change in distribution (including any parameter change)
Change in distribution parameter (e.g. mean, variance,
scale parameter, etc.)
Change in magnitude of signal
Change in mean or change in pattern (i.e. change in slope
or signal waveform)
Change in parameter of autoregressive model
Change in parameter of IMA model
Change in spatial correlation pattern in the data
Change in trend
Change of slope
Intermittent Sine Wave in the data sequence
Single spike in the data sequence

1.) None Data itself

Step change in likelihood function

 57

Step change in membership function
Step change in probability number of the presence of
signal
Step change in probability of the presence of signal
Step change in belief mass function
Step change in count of events (distribution mean)
Step change in distribution mean
Step change in mean
Step change in parameter of interest
Step change in probability of success
Step change in time between events (distribution mean)

Absolute difference Any change in the data
Autocorrelation
function (ACF) Change in autocorrelation pattern in the data
Coefficient from
steerable pyramid Change in grey level of image data
Conditional
intensity Change in conditional intensity
Correlation
coefficient Change in correlation pattern in the data
Correlation
function Change in correlation pattern in the data
Data itself
Descriptor Change in clusters of data
Filtered data from
Sum-box technique Change in filtered data
First nine moments Change in clusters of data
Four different
weight sums Change in grey level of image data
Geometric mean Step change in mean
Inovention Change in process state
Kendall Statistic Change in trend
Knox Statistic Steady change on mean of Poisson distribution
Likelihood value Change in pdf.
Low- and high-
pass Change in clusters of data
Mahalanobis
Distance Change from normal behavior

2.) Simple
Transform-
ation

 Change in clusters of data

 58

Maximum
Likelihood
Estimate of signal
shape and
amplitude Change in shape or amplitude of the signal
Mean Change in trend
 Step change in mean
Mean and Variance Change in location or spread of the data
Mean of smoothed
data Step change in mean
Median Change in median
Normalization of
Low- and high-
pass Change in clusters of data
Normalization of
Time difference
and integration of
data Change in clusters of data
Normalization of
high order statistic Change in clusters of data
Normalized
correlation function Change in correlation pattern in the data
Numbers of right
and left triples Change in cycle pattern in data
Sequential
Probability Ratio
Test (SPRT) Step change in mean of input or output
Signal to noise ratio Change in magnitude of signal relative to noise
Spearman
Correlation
coefficient Change in trend
Tango statistic Change in clusters of data
Third and four
order statistic

Change in skewness and peakiness of data (or change in
distribution shape)

Third cumulant Change in the skewness in data
Third order statistic Any change to non-linear signal
Time difference
and integration of
data Change in clusters of data
Transformed data Change in grey level of image data

 59

Amplitude
modulation
estimate Spike in the output mean
 Steady change in output mean
 Step change in the output mean
Differencing-
stationary
parameter Any change in seasonality parameter
Fitted value from
time series model Change in underlying model
Global factor
estimate Steady change in mean
Margin of error of
slope Change in trend
Predicted value Steady change in mean
Prediction error Change in underlying model
Regression
coefficient Change in correlation pattern in the data
 Change in underlying distribution
 Steady change in mean
Trend estimate Steady change in mean
Trend or Cycle
estimate Steady change in mean

3.)
Regression-
based
method

Weighted sum of
prediction error Change in underlying model
Ai(k) index Change in subspace spanned by the first m PCs
Contribution of
Principal
Component (PC) Change in correlation pattern in the data
Dissimilarity index Change in correlation pattern in the data
Geometric vector Change in correlation pattern in the data
Independent
Component Change in correlation pattern in the data
Latent Variable Change in correlation pattern in the data
Multiple
Correlation
Coefficient (MC) Change in correlation pattern in the data
Principal
Component (PC) Change in correlation pattern in the data

4.) Multi-
variate
Method

Q statistic or
Square Prediction
Error Change in correlation pattern in the data

 60

Reduced fault
signatures Change in clusters of data
Residual Change in correlation pattern in the data
Singular value Change in clusters of data
T-sq Change in correlation pattern in the data
T-sq and Q-statistic Change in correlation pattern in the data
Coefficient of
periodic signal Change in cycle pattern in data
Expansion
coefficient Change in underlying model
Harr coefficients Change in data frequency
Holder's exponent Change in mean
Moving average Change in mean
Principal
component of
wavelet coefficient Change in correlation pattern in the data
Probability density
of residual Change in mean
Quotients which are
the short- and long-
term averages Change in mean
Singular exponents Change in mean
Sum square of error Any change in high frequency band
Time-averaged
wavelet spectrum Change in mean
Transformed data Change in mean
 Change in mean of transformed data
 Change in number of signals
Wavelet
coefficients Change in data frequency
 Change in data mean
 Change in mean

5.)
Transform
to
Frequency
domain

Wavelet packet
node Change in mean
Selected variables Change in correlation pattern in the data 6.)

Statistical
Learning
method Total Avidity Change in clusters of data

While there are six categories of transformation methods, there are only two detection
models. The detection models are threshold method and rule based method. A discussion of
transformation method and detection model is given below.

 61

Transformation method or Feature Extraction
No transformation use data itself (or processed data) as the feature and input to the signal

detection model.
Simple transformation includes averaging. moving averaging, transforming to variance,

higher order statistics, or correlation coefficient, filtering technique, and any simple
transformation. Output from transformation is considered the feature. For example,
features from simple transformation include mean, moving average, (Pearson)
correlation coefficient, third or fourth order statistic, or filtered data.

Regression based transformation is used when the data consists of independent (x) and
dependent variables (y). Common used regression based methods are least square
model (OLS), generalized least square model (GLS), generalized linear model
(GLM), spline regression, LOESS or non-parametric regression. This category also
includes time series model such as autoregressive model (AR), autoregressive moving
average (ARMA), or autoregressive integrated moving average (ARIMA). Regression
based transformation can extract fitted (or predicted) value, residual, regression
coefficients.

Multivariate technique is defined as transformation technique that considers all variables
of interest simultaneously. Principal component analysis (PCA), independent
component analysis (ICA), and partial least square (PLS) are grouped in this
category. PCA and ICA are generally used when there is no dependent variable (y)
while PLS is used with the presence of dependent variable (y). Possible features from
these techniques are principal components, loading, and reduced data. Note that when
reduced data is used, residual is another potential feature. When PLS is used the
potential features also include those of regression based transformation.

Transformation to frequency domain usually appropriate when data have time series
pattern or time domain do not reveal any useful information. It is often used in
economics, finance, and marketing research. Methods include Fourier transform,
wavelet transform, and Laplace transform. Potential features from this transformation
are transformed data, reduced data, transform coefficients, and residuals (if reduced
data is used).

Statistical learning method acts as transformation and signal detection in one algorithm.
In general, data are used as an input to the model and the output from the algorithm is
the decision. This method is computer intensive and involves in adjusting algorithm
parameters. Hence it requires training data for fine tuning the detection model.
Commonly used statistical learning methods are neural network, immune-81, and
genetic algorithm.

Signal detection model

1. Threshold method consists of three classes: classical approach, Bayesian approach,
and statistical learning method. The basic concept is to threshold on the feature or test
statistic. If the feature value or test statistic is beyond the threshold value then the
model signals an alarm. Usually threshold value is set to reduce the false alarm rate
(or probability of type I error).

 62

a. Classical approach is the conventional statistical hypothesis testing. The result
from hypothesis testing is either yes or no. Examples of classical approach
include t-test, F-test, ANOVA, (general) likelihood ratio test, χ2 test,
discrimination analysis, and change point detection. An adaptive version of these
methods is considered as the classical approach as well. The adaptive method is
used when the threshold value or calculation of test statistic is regularly updated
using new observed values.

b. Bayesian approach can result more than yes or no type of answer. The concept is
the same as classical approach but, instead of assuming the underlying model,
Bayesian approach assume underlying conditional probability. Thus the threshold
value is usually a function of conditional probability. Examples of Bayesian
approach are Bayesian detector, Dempster-Schafer, Fuzzy algorithm, and
association rule based on prior algorithm.

c. Statistical Learning method, like Bayesian approach, can result more than yes or
no type of answer. Threshold value is in function of some kinds of similarity
measure (i.e., error function, distance function, entropy, or loss function).
Threshold value is usually set to either minimize false alarm rate or maximize
detection rate or a combination of both. Hence statistical learning methods usually
have an objective function. The threshold value is the value that will maximize
that objective function.

2. Rule based method is simply a combination of threshold method. It involves “if
then”. For instance, a detection model alerts if number of alarm is greater than some
threshold value where the alarm occurs when some test statistic (or feature) is greater
than another threshold value.

4.3.3 Mapping Physical Space to Cyber Space

This section describes how we use aspects of signal detection from the physical space in

designing a model for cyber space signal detection. Table 25 illustrates three DFC elements
along with a signal detection model. To map this table to the cyber space, consider raw data (e.g.,
network traffic data) collected from computers and networks. The raw data goes through
processing to obtain the desired data (e.g., the intensity ratio of packets for the web server to all
packets) from which the feature is extracted using a feature extraction method (e.g., an arithmetic
calculation of the sample average) [21]. Along with DFC, a corresponding signal detection
model incorporates the characteristics of both cyber signal and noise, and monitors the feature to
detect characteristics and decide if a cyber signal is present [21]. Table 27 illustrates an example
of DFC and associated signal detection model in the physical space for the radar detection of a
hostile object in the air, and in cyber space for the detection of the DoS attack from our previous
example.

 63

Table 27. Examples of DFCs and signal detection models [21]

Element Physical Space Cyber Space
Data Radar image data Packet intensity ratio
Feature Shape & size of an object Sample average (mean)
Characteristic Shape is square & size is large Step change
Signal Detection Model A rule-based model: if shape

is square & size is large, then
signal

Cuscore model for step change

If we consider attack data as a signal to detect, and normal use data as noise mixed in

with the signal in cyber space, then there is a mapping between cyber attack detection and signal
detection in the physical space (e.g. radar and sound signal detection). Table 27 uses the cuscore
model for step change to detect a signal in cyber space. Unlike existing techniques for cyber
attack detection that rely on the model of only one element (signal or noise) in the monitored
data, existing techniques for signal detection in the physical space often employ models that
incorporate characteristics of both signal and noise, that is, all elements that exist and are mixed
together in the monitored data [4,25-29].

We use the cuscore model to detect a step change in random noise that fluctuates around
the level of T. The following noise and signal models are considered [4]:

Noise model: 0tt aTy += (1)
Signal model: tt aTy ++= δ (2)

where T is the target value, at0 and at are white noise and δ is the signal. The cuscore statistic is
then defined as [4]:

 () () () ()∑ ∑ ∑∑ −=−=
−

−==
t t t

tt
tt

t
t

tt TyTyaaTyraQ
δ
δ

δ
0

0 . (3)

where rt is the Detector (rate of change of background noise).
This cuscore model is sensitive to detecting a step change signal buried in random noise.

For any random variable, after we take account of the first part we will always have the second
part of random white noise to account for the randomness of the variable. The second part is the
standard form of mathematical modeling. Box and Luceno provide other cuscore models that are
constructed to detect: a sine wave, slope change and single spike signal buried in the random
noise of equation (1), and parameter change signals with the noise of a first-order autoregressive
time series model or the nonstationary disturbance noise of an (IMA) time series model [4].
Many signal detection techniques in the physical space, including low-pass and high-pass filters,
use frequency bands to characterize and differentiate signal and noise to perform signal filtering
or detection accordingly [27].

The attack-norm separation approach consists of the following three steps in order to
detect an attack:

1) Define models of cyber signal and noise
2) Filter out noise from mixed data, using the cyber noise model
3) Identify the cyber signal in the remaining data, using the cyber signal model

For example, in the cuscore model equations (1) and (2) carry out Step 1 of the attack-
norm separation approach by defining the noise model and the signal model. The signal model

 64

indicates that the step change signal is added to the noise. Hence, it is an additive signal model.
Note that not all signals are additive. Some signals may distort the noise in other ways than
simply adding a signal to the noise. Steps 2 and 3 of the attack-norm separation are embedded in
equation (3)

Previously we described how we generalize observations across attacks. Here, we extend
that to identify detailed aspects of the generalized cyber attack variables, including data, feature,
transformation method for feature extraction, characteristic of feature and signal detection
model. Table 28 gives an example of some data generalizations.

Table 28. Examples of generalized data from existing attack profiles

Type of
Data Data Feature Transformation

Method
Characteristic

of Feature
Signal Detection

Model
Single
Source

Raw data: header
fields of each packet
Computed variable:
total similarity score
from comparisons of
all fields between
consecutive packets

No
transformation

N/A Step change 1) t-test using
observations over
time
2) cuscore for step
change

Single
Source

Raw data: a string
indicating the start or
termination of a host
or network application
(e.g., FTP, www) or
user (e.g., system
administrator) in the
Windows registry,
security, system and
application log

No
transformation

N/A Special string
value

String match

Multiple
Source
Intensity
Measures

Raw data: a variable
measuring incoming
and outgoing traffic
volume per second

No
transformation

N/A Step change 1) t-test using
observations over
time
2) cuscore for step
change

Multiple
Source
Intensity
Measures

Raw data: a variable
measuring incoming
and outgoing traffic
volume per second

Wavelet
coefficients

Haar and
Complex
Wavelet analysis

Multivariate
pattern
difference
between signal
and noise

1) ANOVA
2) hierarchical
cluster
3) decision trees
4) a table of
wavelet coefficient
vectors, all using
vectors of wavelet
coefficients from
multiple signal and
noise sessions

The first column in Table 28 groups the variables based on data source and measure of

interest. Data sources here are single or multiple. For multiple data sources, we can look at
different measures, such as intensity measures (time-driven), activity pattern measures (event

 65

driven) and activity-state-performance interaction measures. The examples in Table 28 cover
single source and multiple source w/intensity measure data. The remaining columns give
examples from attacks of data, feature, transformation method, characteristic and signal detection
model.
 Considering Figure 15, step 1 takes raw data, step 2 processes the data (centered, scaled,
screened, etc.) to obtain the variable in step 3 (processed data). Steps 2 and 3 are optional
depending on whether or not the variable of interest requires pre-processing of the raw data. In
step 4 we extract a feature by transforming the data variable using one of the feature extraction
methods given in Table 26 to obtain the desired feature in step 5. At this point, we need to use a
detection model which looks for a certain characteristic on the feature. In step 6 we consider one
of the signal detection models given previously. Finally, in step 7 we make a decision based on
the outcome of step 6. Figure 16 gives an example of using this 7 step process to detect a signal
in the physical space. This example does not require the optional stages of transforming raw data
into desired variable. Thus, Figure 16 shows the details for steps 1 and 4-7 for this example.

Figure 16. Example of the steps in detecting a signal in the physical space

 We can use the same procedure for detecting a signal in cyber space. Table 29 gives a
sample of commonly used feature extraction methods from the physical domain that we can
consider for use in the cyber space. This list is a created from Table 26 and extends each row to
include the corresponding data type, underlying model and signal detection model.

Raw Data =
Underwater

data

Feature Extraction =
Discrete Wavelet
Transform (DWT)

Decision:
Any outliers from the
kernel estimate is flag

as the signal

Detection Model =
Recursive joint

distribution kernel
estimate of sum

squares of selected
wavelet coefficients

Features =
Sum squares of

selected wavelets
coefficients

 66

Table 29. Commonly used feature extraction methods from the physical domain

Data
Type Underlying Model Feature(s) Transformation

Method
Charactersitic

of Feature

Signal
Detection

Model

N/A Correlation
coefficient

Pearson's
correlation
coefficient

Step change MAROC

N/A
Linear

discrimination
model

N/A

Multi
dimensional

heuristic
method

N/A
Quadratic

discrimination
model

N/A Mean Sample average Step change T-test

y = b0 + b1x Step change Mann-Kendall
Statistic

Mann-
Whitney
Statistic
T-test

EWMA: Zs = lSum(1-l)s-tX(t) Fitted value
Time series
model (not
specified)

Step change Prediction
interval

logit[p(y)] = -c + dx Regression
coefficient

Genearlized
Linear Model Step change T-test

OLS model: Yj = a + bj + ej Margin of
error of slope Step change T-test

Seasonal Model
Yijk = m + Ti + Mj + eijk

Regression
coefficient Step change T-test

Y = Xb + e Regression
coefficient

Any regression
technique Step change T-test

jh(B)(ht - m) = qh(B)bt Regression
coefficient ARMA model Step change T-test

f(x,w) = w y(x) + b Fitted value
Adaptive

support vector
regression

Step change

Confidence
interval on
predicted

value

Y = FQ + Y Prediction
error

Bayesian
Regression Step change

Confidence
interval on

predicted error

Step change

R
eg

re
ss

io
n

ba
se

d
m

et
ho

d
Si

m
pl

e
Tr

an
sf

or
m

at
io

n

Any

Any

Time
series

Input
and

output Least squares
regression

Trend
estiamte

Least squares
regression

Mahalanobis
Distance

Mahalanobis
Distance

Our approach includes 3 basic stages:

 67

1. Identifying specific data to collect corresponding to the specified raw data derived
from attack profiles. This stage includes defining the specific data sources. Table 30
illustrates the identification process

Table 30. Defining variables for associated data sources

Type of data Data Identified source of data

Single source Raw data: header fields of
each packet

IP packets – source
address/destination
address packets, port
number

Multiple source
Intensity
measure

Raw data: a variable
measuring incoming and
outgoing traffic volume per
second

IP packets per second

2. Extracting data in the log files collected from each attack using specific programming

tools and statistical packages. The identified data from each log file need to be
transformed into an analyzable form (variable) to run in the tests defined in the
analysis stage and to extract some useful information from them. Table 31 illustrates
the extraction process:

Table 31. Extracting variables

Identified source of data Extracted variable for analysis

TCP port number Similarity score of port numbers by
comparing consecutive packets

IP packets per second IP packets per second from the
performance log file extracted
using Statistica.

3. Analyzing the extracted variables. Two methods are defined for analyzing the

variables (Table 32):
• Directly analyzing the extracted variable without any transformation using T Test

to find out the step change in data
• Transforming the extracted variable using wavelet transform and finding the

pattern change in data between signal and noise. Haar and Morlet wavelet
transformation methods are used for this.

 68

Table 32. Analyzing extracted variables

Extracted variable for
analysis

Transformation
method

Signal detection
model

Similarity score of port
numbers by comparing
consecutive packets

No transformation T Test using
observations over time

IP packets per second
from performance log
file

Both no transformation
and wavelet transform

T Test, ANOVA, a
table of wavelet
coefficients

 The verification process is outlined in Figure 17. In this figure, step 1 is the raw data, step
2 corresponds to stage 1 above, step 3 corresponds to stage 2 above, and steps 4 and 5
correspond to stage 3 above. In this way, we are able to verify the physical signal detection
models for detecting cyber signals.

Figure 17. Example of verification process

4.4 Attack Simulation and Data Collection

This section explains attack simulation and associated data collection carried out in the

project. It is divided into three subsections. The first explains concepts that are common across
all attack simulations. The second explains attack-specific information on simulation and data
collection. The third describes the worm simulation. This section is a result of the simulation of
selected attacks and worm, and covers all relevant implementation details.

Raw data
Destination port in
the TCP header of
the incoming packet
to a host

Identified data
TCP destination port
number in each row in
the Windump file

Extracted variable
Access intensity (access
count per second) to more
common ports

Transformation
(Feature Extraction)

Both no transformation and
wavelet transform

Detection model
T Test, table of wavelet
coefficients, ANOVA

ANALYSIS

 69

4.4.1 Setup Common to Attacks

This section explains concepts common across all the attack simulations. For each attack
simulated, we collected data from various sources on the hosts as well as the network. Table 33
describes the various sources for data and the tools used to collect them.

Table 33. Data collected and collection tools

Data collected Tool used Location
Event logs

(System, security, application)
Windows Event

Viewer
attacker, victim,

bystander
Performance logs

(all counters available)
Performance

monitor utility
attacker, victim,

bystander
Registry logs

(all registry accesses on the host) regmon utility attacker, victim,
bystander

Network data logs
(headers of all packets on the network) windump utility Router

The windows event viewer tool allows access to three event logs: the system, security,

and application log. It can be cleared or saved at any given time. In order to select all audit
events, we need to initially select options in the security policy. The following procedure is
needed only once in a new machine, and can be used for subsequent simulation runs.

1. Control panel -> administrative tools -> Local Security Policy.
2. Open “Local Policy Folder”
3. Click on “Audit Policy” Folder
4. For each item in the “Audit Policy” folder double click on it, and when the “Local

Security Policy Setting” window comes up, select both success and failure check boxes,
followed by “OK”.

5. You may need to close and re-open “Local Security Policy” or restart before the
“effective” policy changes.

6. Find and right click on the “WINNT” folder in “My Computer”.
7. Select “Properties”.
8. Select the Security Tab of the “WINNT Properties” window that pops up.
9. Click the “Advanced…” button.
10. Select the “Auditing” tab of the “Access Control Settings for WINNT” pop up window.
11. Click the “Add…” button.
12. Select “Everyone” from the “Select User or Group” pop up, and click “OK”. The

“Auditing Entry for WINNT” window should pop up. (You can also reach this window
by clicking on the “View/Edit” button on the “Access Control Settings for WINNT”).

13. in the “Auditing Entry for WINNT” select successful and failed check boxes for all the
access types. Make sure that Apply onto is set to “This folder, subfolders and files”. The
box marked “Apply these auditing entries to objects and/or containers within this
container only” should be unchecked.

14. Select “OK” on the “Auditing Entry for WINNT” window.

 70

15. Select “OK” on the “Access Control Settings for WINNT” window.
16. Select “OK” on the “WINNT Properties” window.

The performance monitoring utility can be turned on locally or remotely using the
performance tool. All performance objects were selected and collected once every second
(default is once per 15 seconds). Both of these tools are accessible from Control Panel -> admin
tools.

To capture registry activity, a utility called regmon is used [30]. It records all accesses to
the windows registry in real-time, and is a freely downloadable utility. Its output can be saved to
a text file directly.

To capture network packets, a utility called win dump is used. Win dump is a windows
port of the famous tcpdump utility [31]. Specifically for our setup, we used the following
command line: windump –I 4 –w packlog.bin

For most attacks, the following setup is used:
• Network of 5 machines each having similar configuration.
• Logger machine is used as a remote performance logger.
• Clock server used to synchronize clocks before each attack simulation.
• Gateway is used to collect network data during the attack. In this setup the router

has only one host connected, and thus will only route packets received for that
host.

• The other 3 machines are labeled Attacker, Victim, and Bystander.
Figure 18 describes the simple setup used for the initial simulations of these attacks. All

the machines are connected to a common hub. For our initial simulation, data collection and
discovery, we only considered data at the victim (due to time constraints and the enormous
amount of data collected). This simple setup is sufficient to explore many variables which are
unaffected by whether or not the attacker is on the same subnet, thus is representative of a
realistic environment with respect to those variables.

 71

Figure 18. Setup used for simulation of attacks
In order to compare normal scenarios with attack scenarios, each attack simulation is run

in three phases. Simulation of attacks is done such that normal phases occur before and after the
attack phase. This allows the study of pre attack normal data and after-effect data along with
attack data. The phases are-

• Normal activity data (First 10 minutes), called the normal phase.
• Attack data (variable time period)
• After-effects data (10 minutes)

Attack phase time varies across attacks. For example, in the Meteor FTP attack, this is
almost instantaneous with a single input packet from the attacker, whereas with the Apache
attack, the duration of attack is chosen to be 10 minutes. Figure 19 describes the three phases of
simulation/data collection, and their timelines.

Clock server

Attacker

Gateway
(Router)

Remote Logger

Bystander Victim

Hub

 72

Figure 19. Data Collection Scenarios – Local and Remote

Logging all performance counters once per second creates huge log files, which get

written to disk during the simulation. Writing such a huge file to the disk/storing it in memory
affects the performance counters. Thus, the data logs reflect two effects –

1: Effect of attack simulation
2: Effect of data collection

Since it is not possible to get rid of this effect of data collection, an alternative approach
is used. Performance counters for all machines (attacker, victim, bystander) are collected on a
remote machine. Thus, the effect of writing huge logs to the disk is no longer a problem.
However, this leads to increase in network utilization and corresponding events in the system.

Thus, we have two modes of data collection – Local and Remote. The difference is only
with the large performance logs, which are collected on the local machine itself in the former
case and are collected remotely in the latter case.
Note: To enable remote performance logging, we need to allow access in control panel -
>services.

The event, performance, registry and network data logs collected are in their raw state,
and require some amount of post-processing. The following two steps need to be done.

For Windump, read raw log data from the binary file and convert to text mode, and save
in another file. The command used for this is: windump –r packlog.bin >> network_data.txt
Here packlog.bin is the original file and network_data.txt is the converted text file.

Separate the data logs into the three phases of normal phase, attack phase and post-attack
phase. To achieve this, we need to identify the position in time in each log, at which the attack
begins and ends. As discussed before, for most attacks, the attack phase is 10 minutes, but for a
few attacks, the attack is a lot less than 10 minutes. These times are identified from analysis of
each attack. Once these times are identified, we insert special strings in each log file, indicating
the start and end of the attack. The strings used for this purpose are <attack begins here> and
<attack ends before here>. The time is rounded to the next higher minute.

Begin data
collection

Initiate
attack

End attack End data
collection

Time

Normal (10 min) Attack (Var) After-effects (10 min)

 73

A small perl script is used to insert the strings in the performance logs. At this point, the
filenames, the string to be inserted and the time at which they are inserted are part of the script
itself. (In the future, they can be taken as parameters to the script.) For the other logs, insertion of
the strings is fairly trivial and is done manually.

The following procedure is followed during simulation. Computer clocks for all five
systems involved in the simulation are synchronized against the same time server

• Before each simulation, all event logs (application, system, and security logs) are
cleared

• Windump packet logger on Gateway is started
• Performance logs are started (local or remote)
• Registry monitoring is turned on.
• Wait for 10 minutes of normal activity
• Initiate attack script/program
• Wait for 10 minutes/lesser time for attack to complete
• Allow 10 minutes of after effects time
• Stop performance counters
• Registry monitoring is turned off and logs saved
• Windump is stopped and log saved
• Performance logs are stopped and logs saved
• Event logs are saved.

4.4.2 Specific information for each attack

The following section explains attack specific simulation/data collection details, if any. If

there is no change from the normal simulation described above, then the particular attack is listed
without any explanation.

4.4.2.1 EZPublish Confidentiality Attack

EZPublish is software which has a confidentiality vulnerability [32]. A critical system
file is not protected with the right set of permissions, allowing anyone to access it and read the
underlying database’s username/passwords and other information.

• Machines: Attacker, Victim, Bystander
• Attack: Attack includes opening a file on the remote machine, and saving it to local disk.

All this is done in under 1 minute. Very likely that attack activity is similar to normal
activity, since this is a confidentiality attack.
 Victim has EZPublish software installed on the machine, and allows remote

connections. Default settings are enabled.
 Attacker machine connects through the LAN and issues request to the software on

victim for the settings file.
 The file is returned to the attacker, thus compromising the security.

• Simulation timelines: 20 minutes of normal data, followed by attack (under 1 minute),
followed by 10 minutes of after effects. Here, the attack is a single request for a particular
file, and the attack ends as soon as the file transfer is successful.

 74

• Configuration: For this attack, the only configuration needed is to setup the EZPublish
software on the victim, and query the victim with a request for the specific system file.
This request would be: http://[target]/settings/site.ini, where target is the IP address of the
victim machine.

4.4.2.2 Nmap Scanner

The Nmap scanner is used in this simulation for two purposes – scanning the ports for a

list of all open ports on the system, and probing every open port to learn what service /version of
software is running at the port [33].

• Machines: Attacker, Victim and Bystander
• Attack: The attack uses the standard nmap program, which can be freely downloaded

from the Internet. Options in the nmap program allow selection of victim, selection of
ports to be scanned, selection of options to probe for services at each open port and other
options.

• Simulation timelines: 10 minutes of quiet/no attack, followed by approx. 5 minutes of
nmap probing, followed by 10 minutes of quiet aftereffects. Since the probing program
automatically terminates after 5 minutes, there is no need for manual intervention to stop
the attack. Note: In the remote logging case, normal phase before attack is 13 minutes,
instead of 10 minutes, due to an oversight.

• Configuration: nmap -P0 -p 1-1024 -v -v -sT -sV Victim. This scans ports 1 through
1024, gives verbal output, does a version scan and a stealthy scan on Victim machine.
These were found to be open TCP ports on the victim: 7, 9, 13, 17, 19, 21, 135, 445

4.4.2.3 Netbus Trojan

Netbus Trojan is a Trojan program that gets installed when a legitimate program is

installed by a user. The original installable itself is affected, so the user is not aware of the
installation.

• Machines: Victim and Bystander
• Attack:

 Install malicious program with the game on the victim.
 Wait 5 minutes.
 Connect from attacker’s machine to victim’s machine through netbus backdoor.
 Do a screen dump of victim onto attacker machine as a proof of concept. This shows

the contents of the victim’s screen to the attacker.
 Attacker has a installable zip file, for a poker game. The victim installs this file from

the attacker machine, thinking that it is a game installable and installs it. When the
game is installed, automatically the netbus server is also installed. This is achieved by
a simple batch script. (install.bat)

• Simulation timelines: 10 minutes of normal activity, followed by attack phase for 5
minutes, followed by 10 minutes of after effects; Here, the attack phase includes-
accessing the malicious executable program on the victim, installing the program (and
inadvertently the backdoor) which occurs in less than a minute. This is followed by about
5 minutes of silence and then the attacker connects to the victim through the backdoor

 75

and gets a screen dump of the victim’s machine. Once the screen dump is complete, the
attack is considered complete.

• Configuration: A small script is written as a batch file in MS-DOS. This installs a game
of poker, along with the netbus Trojan server on the victim. The attacker has a netbus
client, and uses the IP address of the victim to connect and exploit its vulnerability.

4.4.2.4 Meteor FTP

Meteor FTP is a popular FTP server that is available for download on the internet [34].

This software has buffer overflow vulnerability, in the username field. Thus, if a long username
is supplied by the user, the application is unable to handle it and crashes.

• Machines: Attacker, Victim and Bystander
• Attack: Remotely connect to the FTP server. In place of the Username, enter USER

followed by a set of random characters. The server will crash after spitting out an error
message that unauthorized area in memory was being accessed

• Simulation timelines: Since this attack is active only when the username request is sent to
the client and the client responds with a single long string, it takes less than a minute.
Thus, this attack has 10 minutes of normal phase, followed by an attack phase of under
one minute, followed by 10 minutes of after effects.

• Configuration: For this attack, the Meteor FTP server is installed on the victim machine.
The attacker connects to the victim machine through the FTP service, and issues a long
username as the input. This leads to crashing the service on the victim machine. The
attack is fairly straightforward.

4.4.2.5 IRC Chat Server Abuse

IRC allows multiple users to login to the char server program, enter a specific chat room

and chat with the other users. This is not an attack per se, it is more a misuse of computing
resources and user time. Thus, there is no attacker, victim for this attack. Rather, there is the
server and the client.

• Machines: For this simulation, the IRC chat server is setup on one machine, while the
char client is setup on the other machine. Thus we have: Client, Server and Bystander.

• Attack: For this simulation, attack involves connecting from the client to the server,
entering a chat room and waiting for 10 minutes with the connection between the client
and server still on. As long as the connection is active, the server/client sends ping
packets back and forth to verify the connection status.

• Simulation timelines: 10 minutes of normal session, followed by ten minutes of attack
session, followed by ten more minutes of aftereffects.

• Configuration: The IRC chat server and client are downloadable from the Internet. The
chat server is installed on the Server machine, while the client is installed on the Client
machine. The client needs to be configured with the IP address/port of the chat server.

 76

4.4.2.6 ARP Poison

Attacker sends malformed ARP update packets on the LAN, corresponding to the
victim's IP address [8]. This makes the machines on the LAN learn the wrong MAC for the
victim's IP address. Any attempt to reach the victim might fail if the machines learn the wrong
MAC address. (This information is stored in the ARP table of the machine)

• Machines: Attacker, Victim and Bystander
• Attack: The attack executable/program used, sends a series of malformed ARP packets

on the LAN at regular intervals, during the attack phase. Each packet sent provides the
wrong MAC address to the IP address of the victim. Thus, the attack is considered on, as
long as the attack program is run. The attack stops when the attack program is terminated
(with a Control + C)

• Simulation timelines: 10 minutes of no attack, followed by attack initiation for 10
minutes, followed by after-effects for 10 minutes.

• Configuration: The attack program was written in C++, and compiled on VC++. The
parameters like time between packets, IP address under attack and MAC address sent are
configurable in the program itself. Any change to the configuration will require a
recompilation of the program.

4.4.2.7 Sobig Worm

Sobig is an e-mail worm. It requires user intervention to spread - a user must be tricked

into executing the attachment containing the worm. Once executed, the worm sends out mass e-
mails to e-mail addresses found on the compromised machine.

• Machines: Attacker, Victim, Bystander and an additional machine Server to act as a local
mail server.

• Attack: The attacker (an infected machine) sends an e-mail with the worm payload to the
victim machine - the worm searches the victim machine for e-mail addresses and sends e-
mails with the worm payload to additional machines, including the victim, through the
local mail server. When a user on the victim machine opens the e-mail and is tricked into
executing the attachment, the worm infects the victim machine as well.

• Simulation timelines: 10 minutes of no attack, followed by approximately 10 minutes of
attack (where the worm searches for the victim's e-mail address and sends out infected e-
mails), followed by after-effects for 10 minutes.

• Configuration: For this attack, an e-mail server must be installed and running on the local
network. A DNS server must also be present. E-mail clients (e.g., Microsoft Outlook)
must be present on both the attacker and victim machines. To start the attack, the worm is
executed on the attacker machine. The attacker machine must contain a text file that
possesses an e-mail address associated with the victim machine.

4.5 Analytical Discovery

To develop models of cyber attacks, we discover characteristics of cyber signal found in

our simulation data. We verify these findings by comparing them with our profiles of cyber

 77

attacks. We investigated many data analysis techniques, and found the techniques given in this
section to be the most useful in this investigation. Our investigation included extracting features
from raw attack simulation data and looking for distinguishing characteristics on those features.
In this section we present some analysis results.

These results are only a sampling of the analysis we have conducted. Here we only
present the analysis results from one of three or four machines for each attack simulation. The
results presented here are greatly summarized as the actual amount of analysis we have done is
quite extensive. In the next subsections for the six attacks simulated, we only show those
variables that show any change between any phases and appear as such in every attack. The
complete scope of our analysis shows the result of every variable for every stage in every attack.
For the same reasons, we only interpret and discuss some of the results, within the scope of this
project. Our future work and publications will give more details of our analytical discovery.

4.5.1 Correlation, Distribution and Difference in Mean

For this section, we include the following results for each analysis (autocorrelation,
Pearson correlation, distribution, and difference in mean):

1. For each of the 6 attacks we compute the following 18 lists
• All variables that change between pre-attack/attack
• All variables that change between attack/post-attack
• All variables that change between pre-attack/post-attack

2. We combine these list together for each attack (resulting in 6 lists)
3. We compare these 6 lists and pick out the common variables
4. We pick one variable that is in one of the 18 lists from step 1 and is not in the list from

step 3. For this variable, we propose a suggestion as to why it is not common among
attacks.

5. We pick one variable from the list in step 3. For this variable, we propose a suggestion as
to why it is common among attacks.

This report gives the results of steps 3, 4 and 5. However, we do keep the lists from steps 1 and 2
for further study.

We first present the procedures we follow for data analysis. This includes an illustration
of the entire scope of our data analysis, some of which is outside the scope of this report. Next
we give results from four tests on six attacks: probability distribution, autocorrelation, Pearson
correlation and difference in averages. Finally we present our results of the one worm covered in
this section.

 78

4.5.1.1 Procedures

This section outlines the data analysis tests we performed with the tools we developed to

run these tests. This is a comprehensive list of the data analysis process for the performance
object (performance log) data, and includes steps that we complete, but do not include results for
in this report.

Steps in analyzing data: Performance Logs
For raw data file containing data from all three stages: pre-attack, attack and pos-attack

1. Filter out the first 10 observations, using program, and all-zero variables
2. Filter variable with zero variance, using program
3. Separate the file into three files for : pre-attack, attack and post-attack data , based on

string inserted
For preattack OR attack OR post attack files

1. Filter out the all-zero variables
2. Replace missing data with mean, using program
3. Run basic stats: mean, variance, minimum, maximum, standard deviation, etc.
4. Filter variable with zero variance, using program
5. Run correlation matrix, histograms, hierarchical clustering of variables manually
6. Run percentage of significant correlations, using program
7. Scale data using ((x-mean)/SD) for autocorrelation
8. Fix long name variables problem manually
9. Run autocorrelation analysis, using program
10. Run KS Test, and Chi Square Test for distribution testing
11. Run Skewness and Kurtosis, using program (These have to be done after Step 1 of the

Mixed files, using common-variables-filtered individual files)
12. Run ANOVA on percentage of significant correlations results from parametric method

For mixed files (pre-attack followed by attack) (attack followed by post- attack) (pre-
attack followed by post-attack)

13. Compare the two files to filter out the uncommon variables to keep only variables that
exist in both normal and attack files, using program

14. Run time series plot (sampling every second), using program
15. Run t-test, and filtered only common variables regardless of data collecting method, and

victim machines, using programs
16. Import files into Statistica Miner to run Decision Tree

Steps in analyzing data

1. Run Pearson, and Spearman for correlations coefficient between variables
2. Run ANOVA on percentage of significant correlations results from nonparametric

method
3. Run Mann-Whitney U test, T-test for difference in averages

In this report, we only consider the numerical data from the performance logs

(performance object data) generated during attack simulation and data collection. The data we
analyze here is from one machine. In five of the attacks, this is the victim machine, for IRC Chat,

 79

it is the chat server. We use the terms common and uncommon in two cases. With respect to
local and remote data collection, common variables are those that appear with the same
characteristics in both collection methods. This eliminates the possibility that the variable is
effected by data collection method. For attacks, a common variable shows the same
characteristic across all attacks in this study, whereas an uncommon variable does not. The
analysis results we computed and collected are as follows:

Distribution Analysis

• Common variables between local and remote collecting that fall into each distribution for
each phase

• Common variables between local and remote collecting that shift distributions between
phases

• Common variables among all attack types that shift distributions between phase
• Uncommon variables among all attack types that shift distributions between phase
• Skewness and Kurtosis change between phases
• Variances Difference

Correlation Analysis

• Variables list that change significance of correlation coefficient between phases (common
between local and remote)

• Variables list that are significant in each phases (common between local and remote)

Autocorrelation analysis

• Variables that are very uncorrelated for each phase (common between local and remote)
• Variables that are highly correlated for each phase (common between local and remote)
• Variables that shift autocorrelation between phases(common between local and remote)
• Common variables across 6 attacks
• Uncommon variables for each attack

Difference in mean

• Variables that shows difference in mean between phases
• Common variables that show difference across all attack type
• Uncommon variables that show difference for each attack

Although we collect and save many intermediate results, we only present here the higher

level findings for the sake of brevity.

4.5.1.2 Six Attacks: Probability Distribution of Variables

We experiment to identify the probability distribution of variables in each phase: pre-

attack, attack and post-attack, and find differences in the distributions of variables among the
three phases to use as the observables in identifying an attack. Due to the small size of some
attack phase data, we use the Kolmogorov-Smirnov (KS) test for probability distribution because
it is reliable even on small datasets.

 80

Analysis results show that there are four types of distributions commonly found across all
6 attacks. Figure 20a-c shows an example of what each of these types of distributions look like:

a) Skewed distribution
b) Bimodal distribution
c) Uniform and symmetric (potentially normal) distribution

0

0

0

0

0

0

0

0

a) Examples of right and left skewed distributions

10 0 10 20 30 40 50 60 70 80 90

0

0

0

0

0

0

0

0

b) Examples of bimodal distributions, consisting of two uniform right skewed distributions

c) Example of uniform and symmetric distributions

Figure 20. Example shapes of distributions

 Other significant findings show the following:

• For all 6 attacks, the most common type of distribution found overall is right skewed
• There are many variables that shift to a normal or uniform distribution, from one

phase to the next (pre-attack to attack, or attack to post-attack)

 81

We conduct the KS test on all 6 attacks to test whether the variables fall into any of the
three distributions: uniform, exponential, and normal. Due to the characteristics of our simulated
data, we can only test exponential distribution (a right skewed distribution), uniform distribution,
and normal distribution (a symmetric distribution). Also, currently there is no statistical test for
testing bimodal distribution. As an example of how we derive distributions for the variables,
Figure 21 shows the KS and Chi Squared test results from 3 machines for 3 probability
distributions and 3 phases of data collection from 2 locations.

Figure 21. KS and Chi Squared sample test results

Table 34 shows an example of the number of variables that fall into a particular

distribution, using KS and Chi Square test from EZPublish attack.

Table 34. Number of variables that fall into a particular distribution in EZPublish attack

 Distributions Phases
Uniform Exponential Normal

Total Variables
in Dataset

Pre-attack 35 0 0 601
Attack 48 0 54 374
Post-attack 50 0 0 369

From Table 34, we see that none of the variables fall into normal distribution in pre-

attack and post attack phase, but 54 variables fall into normal distribution only in attack phase.
The distribution shifts are found in all 6 attacks, but numbers of variables that shift distribution
vary. There is no common variable across all 6 attacks. However, the common groups of

KS Chi Squared Total
Distributions ----> Uniform Exponential Normal Uniform Exponential Normal
Pre-attack Local

Alpha01 35 0 0 35 0 0 560
Alpha02 37 0 3 37 0 2 449
Alpha03 39 0 1 39 0 0 398

Pre-attack Remote
Alpha01 34 0 0 34 0 0 573
Alpha02 36 0 0 36 0 0 601
Alpha03 35 0 8 35 0 0 497

Attack Local
Alpha01 43 0 48 43 1 48 455
Alpha02 49 0 60 49 9 59 332
Alpha03 61 0 76 62 1 73 262

Attack Remote
Alpha01 34 0 33 34 5 33 527
Alpha02 49 0 82 51 0 51 374
Alpha03 64 0 64 63 0 61 230

Post-attack Local
Alpha01 36 0 3 36 0 2 439
Alpha02 49 0 2 49 0 1 367
Alpha03 53 0 3 50 0 0 322

Post-attack Remote
Alpha01 38 0 0 38 0 0 387
Alpha02 47 0 0 48 0 0 369

 •This table
shows that
many
variables are
normally
distributed
only during
the attack
phase

 82

variables that shift among the three phases are Process, Processor, Terminal Services Session,
and Memory groups.

Table 35 shows an example result of an uncommon variable from EZPublish that shift

distribution among three phases. The shift does not happen in other attacks in this study.

Table 35. Example result of uncommon variables from EZPublish.

From Table 35, variable “Memory\Cache Faults/sec” does not fall into either uniform,

exponential or normal distribution during pre-attack and post-attack phase, but falls into normal
distribution during the attack. The variable shows the number of faults which occur when a page
sought in the file system cache is not found there and must be retrieved from elsewhere in the
memory or from disk. The file system cache is an area of physical memory that stores recently
used pages of data for applications. We believe the reason for this distribution shift is that when
the attack happens, the attacker requests a confidential file, which is not frequently accessed,
from the victim machine. Due to infrequent access, the file is not cached and the system has to
fetch it. This increases the faults and also lowers the variance of faults/sec during the attack, and
makes the variable fall into normal distribution. The reason that this variable does not show the
shift in other attacks like Netbus Trojan or IRC Chat is that these two attacks do not involve
requesting the infrequently accessed file.

4.5.1.3 Six Attacks: Correlation of Variables

For correlation of variables, we consider autocorrelation and Pearson correlation. We
outline a sampling of our results in this section.

Autocorrelation

“Autocorrelation is the expected value of the product of a random variable or signal

realization with a time-shifted version of itself” (http://cnx.rice.edu/content/m10676/latest/). We
use autocorrelation analysis to detect whether a variable changes its autocorrelation (shifts)
between pre-attack, attack and post-attack phases.

As shown in Figure 22, we discover the variables, which shift autocorrelation between
phases, using the ARP Poison attack as an example. From Figure 22 we can see that we collect
variables from 3 computers (Attacker, Victim and Bystander), during 3 phases of an attack (pre,
during and post) using 2 collection methods (local and remote). We look at whether the
autocorrelation for each variable in each phase is high or low, and record those variables that
change autocorrelation between phases. The procedure of discovering the shifting variables for
other attacks follows a similar routine. The procedure of finding common shifting variables
among all six attacks is shown in Figure 23, where we see that we consider all sets of shifting
variables for each attack and each phase, and extract those variables that are common (in the
union of the sets) for each machine.

Variable Name Pre-attack Attack Post-attack
Memory\Cache Faults/sec Unidentified Normal Unidentified

 83

Figure 22. Procedure of finding shifting variables in autocorrelation analysis

 84

Figure 23. Procedure of finding common variables in autocorrelation analysis

The common variables that shift autocorrelation status among six attacks are shown in

Table 36. “H” means the variable is significantly autocorrelated (using tests for correlation with

 85

a p-value of .05 and 10 lags; both commonly used values). “L” means the variable is not
significantly autocorrelated. “-” indicates the variable shows that variable is neither “H” nor “L”.

Table 36. Autocorrelation Shifting Variables on machine Victim

VARIABLE PRE-
ATTACK ATTACK POST-

ATTACK
Terminal Services Session(Console)\Input Errors H H -
Terminal Services Session(Console)\Input Async Overflow H H -
Terminal Services Session(Console)\Total Errors H H -
Terminal Services Session(Console)\Total Async Overflow H H -
Terminal Services Session(Console)\Protocol Bitmap Cache Reads H H -

Table 37 gives an example of an uncommon shifting variable from the ARP Poison

attack.

Table 37. Example of an uncommon variable from ARP Poison

VARIABLE PRE-
ATTACK ATTACK POST-

ATTACK
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet
Scheduler Miniport)\Bytes Sent/sec L H L

In Table 37, the variable “Network Interface(Intel[R] PRO_100 VE Network Connection

- Packet Scheduler Miniport)\Bytes Sent/sec” on the victim machine under ARP Poison attack, is
not autocorrelated in the pre-attack or post-attack phase. It is highly autocorrelated in the attack
phase. This variable shows the rate at which bytes are sent on the interface, including framing
characters. In the ARP Poison attack, the attacker sends ARP response packets with the wrong
MAC address to the victim, who receives the requests and updates its ARP table. Thus, the
victim cannot reach its destination successfully. The data it sends may explain this high
correlation characteristic. Other attacks, like EZPublish, don’t involve multiple network packets,
which may be why it doesn’t show up in the common variables of all six attacks.

Table 38 shows an example of a common variable among attacks.

Table 38. Example of a common variable

VARIABLE PRE-
ATTACK ATTACK POST-

ATTACK
Terminal Services Session(Console)\Protocol Bitmap Cache Reads H H -

“Protocol Bitmap Cache Reads show the number of references to the protocol bitmap

cache” [35]. This variable shows significant autocorrelation in both pre-attack and attack phases,
but not in the post-attack phase. This may reveal that all the attacks influence the number of
references to the protocol bitmap cache, which may explain why it changes its autocorrelation
pattern for all the attacks.

 86

Pearson Correlation

We use Pearson correlation to analyze the correlation between two variables. The shifting
of the Pearson correlation of a pair of variables between phases can help to detect the shift of the
phase changes. Figure 24 shows the procedure of finding Pearson correlation shifting variables in
the ARP Poison attack. Figure 25 depicts the procedure of finding common variables that shift
Pearson correlation status between phases among all six attacks.

 87

Figure 24. Procedure of finding shifting variable in Pearson correlation analysis

 88

Figure 25. Procedure of finding common shifting variable in Pearson correlation analysis

Compared to Autocorrelation analysis in which we find only 5 common variables, there

are 266 pairs of common variables in the six attacks. This is because Pearson correlation analysis
looks into pairs of the variables instead of a single variable. For instance, given 500 variables,
autocorrelation analysis will analyze the 500 variables while Pearson correlation will analyze

750,1242
500 =C pairs of variables. Table 39 shows the first 10 pairs of common variables. “H”

shows the two variables are significantly correlated. “-” indicates the two variables are not.

 89

Table 39. Sample Pearson Correlation Common Variables on Machine Victim

VARIABLE1 VARIABLE2 PRE-
ATTACK ATTACK POST-

ATTACK
Cache\Lazy Write
Flushes/sec

Process(SVCHOST#1)\Handle
Count

H - -

Cache\Lazy Write Pages/sec Process(SVCHOST#1)\Handle
Count

H - -

Memory\Page Faults/sec Objects\Threads H - -
Memory\Page Faults/sec Process(SVCHOST#1)\Thread

Count
H - -

Memory\Page Faults/sec Process(SVCHOST#1)\Pool
Paged Bytes

H - -

Memory\Page Faults/sec Process(_Total)\Thread Count H - -
Memory\Page Faults/sec System\Threads H - -
Memory\Page Faults/sec Terminal Services

Session(Console)\Thread
Count

H - -

Memory\Available Bytes Terminal Services
Session(Console)\Input Errors

H - -

Memory\Available Bytes Terminal Services
Session(Console)\Total Errors

H - -

Table 40 gives an example pair of uncommon shifting variables.

Table 40. Example pair of uncommon variables

VARIABLE1 VARIABLE2 PRE-
ATTACK ATTACK POST-

ATTACK

Memory\Page Faults/sec Redirector\Packets Received/sec - H -

Variables “Memory\Page Faults/sec” and “Redirector\Packets Received/sec” are not

correlated in pre or post-attack phases, but are in attack phase.
Memory\Page Faults/sec is the overall rate of page faults handled by the processor per

second. A page fault occurs when a process requires code or data that is not in its working set (its
space in physical memory). This counter includes both hard faults (those that require disk access)
and soft faults (where the faulted page is found elsewhere in physical memory) [35].

The Redirector performance object consists of counters that monitor network connections
originating at the local computer. Packets Received/sec is the rate at which the Redirector is
receiving packets (also called SMBs or Server Message Blocks). Network transmissions are
divided into packets. The average number of bytes received in a packet can be obtained by
dividing Bytes Received/sec by this counter [35].

 90

Table 41 gives an example pair of common shifting variables.

Table 41. Example pair of common variables

VARIABLE1 VARIABLE2 PRE-
ATTACK ATTACK POST-

ATTACK
Memory\Page Faults/sec System\Threads H - -

System\Threads is the number of threads in the computer at the time of data collection.

Notice that this is an instantaneous count, not an average over the time interval. A thread is the
basic executable entity that can execute instructions in a processor [35].

The above two variables are correlated in the pre-attack phase, which may reveal the
“normal” relationship between them. Note that both variables in the pair in Table 41 are also
correlated in the pre-attack phase.

4.5.1.4 Six Attacks: Variable Difference in Means

In this section we investigate the differences in average of all variables among the three
phases: pre-attack, attack, and post-attack. In earlier versions of attack simulations, we have both
active scenarios (with user activity) and inactive scenarios (without user activity). We find that
numbers of variables that have a shift in average between phases are noticeably higher in user
activity scenarios. These results suggest that if we know characteristics of both signal and noise,
it will enable us to see more contrast between the two and thus, detect the intrusion more
effectively.

Since our data has several types of distributions, we used the Mann-Whitney U test
(Wilcoxon test) to test for difference in means because of its reliable performance regardless the
data distributions. In each attack, the Mann-Whitney U test is conducted in three two-phase files:
pre-attack vs. attack, attack vs. post-attack, and pre-attack vs. post-attack. Table 42 shows
example result from the Mann-Whitney test from UDP Storm attack.

Table 42. Mann-Whitney test from UDP Storm attack

Active /Inactive Number of significant variables
Active 319

Inactive 189

Table 43 shows example results from the Mann-Whitney test on data from the ARP

Poison attack.

Table 43. Example results from Mann-Whitney on ARP Poison attack

Active /Inactive Number of significant variables
Active 139

Inactive 103

 91

From Table 42 and Table 43, the numbers of significant variables are noticeably higher in
active scenarios than in inactive scenarios. In newer version of attack simulation, we have a list
of common variables that have mean shift among phases in all 6 attacks Table 44 shows a subset
of these variables.

Table 44. Example list of common variables that shift averages

Variable Name
Memory\Available Bytes
Memory\Committed Bytes
Memory\Demand Zero Faults/sec
Memory\Pool Paged Bytes
Memory\Pool Paged Resident Bytes
Memory\% Committed Bytes In Use
Memory\Available Kbytes
Objects\Threads
Objects\Events
Process(CSRSS)\Handle Count
Process(LSASS)\Working Set
Process(SVCHOST#1)\Virtual Bytes
Process(SVCHOST#1)\Working Set
Process(SVCHOST#1)\Page File Bytes
Process(SVCHOST#1)\Private Bytes
Process(SVCHOST#1)\Thread Count
Process(_Total)\Virtual Bytes
Process(_Total)\Working Set Peak
Process(_Total)\Working Set
Process(_Total)\Page File Bytes Peak
Process(_Total)\Page File Bytes
Process(_Total)\Private Bytes
Process(_Total)\Thread Count
Process(_Total)\Pool Nonpaged Bytes
Terminal Services Session(Console)\Virtual Bytes
Terminal Services Session(Console)\Working Set Peak
Terminal Services Session(Console)\Working Set
Terminal Services Session(Console)\Page File Bytes Peak
Terminal Services Session(Console)\Page File Bytes
Terminal Services Session(Console)\Private Bytes
Terminal Services Session(Console)\Thread Count
Terminal Services Session(Console)\Pool Nonpaged Bytes

From Table 44, the common groups of variables that have a mean shift between phases

are Memory, Objects, Process, and Terminal Services Session. Most of the common variables
are good indicators for the level of activity generated from attacks.

 92

In IRC Chat, the “Objects\Events” variable average value during the attack phase is more
than that of pre-attack phase. This variable shows the number of events in the computer at the
time of data collection. An event is used when two or more threads wish to synchronize
execution. We believe this mean shift happens because, during the attack, the computer opens a
new network connection with another machine. So, perhaps, the system creates more threads to
handle this network activity. We found this increase in averages in other attacks (i.e. NMAP).

We find many variables that shift average values among phases in only some types of

attacks. Table 45 shows an example list of uncommon variables that have changes in average
value among phases from NMAP attack.

Table 45. Example list of uncommon variables from NMAP attack.

Variable Name
IP\Datagrams/sec
IP\Datagrams Received/sec
IP\Datagrams Received Delivered/sec
IP\Datagrams Sent/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Bytes Total/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Packets/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Bytes Received/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Packets Received Unicast/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Bytes Sent/sec
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler
Miniport)\Packets Sent Unicast/sec
Processor(0)\Interrupts/sec
Processor(0)\DPCs Queued/sec
Processor(0)\% Idle Time
Processor(0)\% C3 Time
Processor(0)\C3 Transitions/sec
TCP\Segments/sec
TCP\Connections Passive
TCP\Connections Reset
TCP\Segments Received/sec
TCP\Segments Sent/sec

From Table 45, in NMAP, the “IP\Datagrams/sec” variable’s average value during pre-

attack and post-attack is lower than that of the attack phase. “IP\Datagrams/sec” shows the rate at
which IP datagrams are received from or sent to the interfaces, including those in error. We
believe that the difference in average is caused by the IP inquiries and responses between

 93

attacker and victim during the port scan. Other attack types in this study do not require such IP
packets transferring, so this variable appears significant in NMAP only.

4.5.1.5 Sobig Worm Data Analysis

Because the worm analysis only includes one worm, we cannot do comparisons across
worms. We include these results as an example to show how our data analysis tools extend
beyond analyzing attacks to the analysis of data collected for worms as well. In this section we
present a sample of some of our early findings on analyzing probability distribution and variable
correlation in worm data.

Probability distribution of variables

Just as with the six attacks described previously, we conduct the KS and Chi Squared

tests on the data from the Sobig worm to test whether the variables fall into any of the three
distributions: uniform, exponential, and normal. (Note: data from the attack phase of the remote
data collection scenario is not available at this time.) These results are shown in Table 46.

Table 46. Results from KS and Chi-Squared tests on worm

KS Chi-Squared Distributions
Uniform Exponential Normal Uniform Exponential Normal

Total

Pre-attack Local 126 0 5 126 0 0 586
Pre-attack Remote 310 0 0 309 0 0 841
Attack Local 28 0 0 37 0 0 734
Post-attack Local 62 0 27 62 0 0 657
Post-attack Remote 257 0 30 257 0 0 846

Similar to the EZPublish attack data, few or no variables fall into the normal distribution

during the pre-attack phase. However, the KS test shows a number of variables that fall into the
normal distribution during the post-attack phase (as opposed to during the attack phase in the
EZPublish attack).

Correlation of Variables

For the correlation of variables, we again perform autocorrelation and Pearson correlation
as before. Because there are so many variables in this study, the results given in this section only
include the counts of those variables.

Autocorrelation

Our findings suggest that a number of variables shift autocorrelation status between
phases. Furthermore, the number of variables increases with remote data collection. These results
are given in Table 47.

 94

Table 47. Autocorrelation results for worm

Collection Location Phase Variable Count
Local Pre 585
Local Attack 733
Local Post 656

Remote Pre 840
Remote Attack 910
Remote Post 845

Pearson Correlation

In our findings, it seems like literally half of the variables are correlated. The results also
suggest that many variables shift between phases and collection modes as we see for
autocorrelation. We give these variable counts in Table 48.

Table 48. Pearson correlation results for worm

Significant

Correlations Total Cells
Correlation
Percentage

Pre-attack Local 76940 170236 45.196%
Pre-attack Remote 202078 351541 57.483%
Attack Local 110146 267546 41.169%
Attack Remote 214872 412686 52.067%
Post-attack Local 92770 214185 43.313%
Post-attack Remote 195904 355746 55.069%

4.5.2 Wavelets

In this section we give some results from our analysis using wavelets. We follow these
steps:

1. Identify specific data to collect corresponding to the specified raw data derived from
attack profiles

2. Extracting data in the log files collected from each attack using specific programming
tools and statistical packages

3. Analyzing the extracted variables

The section proceeds as follows: describe procedures used, present lists of identified and
extracted variables (steps 1 and 2), present results of Wavelet and ANOVA analysis (step 3).

4.5.2.1 Procedures

We generalize variables from our attack profiles. We use this list of variables as input to

programs, which we have written to extract the variables from our simulation data files.

 95

To test our methods of verifying additional features on data, we analyze all variables and
report examples of those results in this section. Two kinds of analysis are carried out: Wavelet
analysis and ANOVA for the wavelet coefficients. For both the analysis, remote and local
scenarios of data collection are considered .Data from performance log on Victim is collected
and only the non-zero, non-invaried set of variables are considered for analysis. In all the attacks
the number of variables in this category ranges from 400 to 700. Types of wavelet transforms
considered for both the analysis

• Haar transform – useful in approximating to step change pattern.
• Morlet transform – useful in approximating to sine and cosine wave patterns.
• Derivative of Gaussian (DOG)/Mexican hat- useful in approximating to Gaussian noise

pattern which is dominant in physical space.
• Paul transform –useful in approximating to narrow changes in sine and cosine and forms

a bridge between morlet and derivative of Gaussian which will help in estimating the
direction in which pattern changes.

4.5.2.2 Identification and Extraction of Variables

 Table 49 gives a list of variables that we have identified from our attack profile
generalizations and extracted using tools we created.

Table 49. Variables identified and extracted

Data
Type Identified Variables Extracted Variables

single source
1 Raw data: header fields and some data

fields (e.g., file name) of each packet
Computed variable: total similarity
score from comparisons of all fields
between consecutive packets

IP packet header -SRC,DEST
TCP packet header –
SRC_PORT,DEST_PORT
(from the network data log, extracted
using c program)

2 Raw data: a string indicating the start or
termination of a host or network
application in the Windows
security/system/application log

“Registry, security logs, the start time
of each new application”
EX: Registry log –Explorer.exe
Security log –Image file name like
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE
(extracted using c program)

multiple source, subject to Haar and Complex wavelet analysis
Intensity measures

 96

1 Raw data: a variable measuring
incoming and outgoing traffic volume
per second

1. Network Interface(Intel[R] PRO_100 VE
Network Connection - Packet Scheduler
Miniport)\Packets/sec.
2. Network Interface(MS TCP Loopback
interface)\Packets/sec
3. Network Interface(Intel[R]
PRO_Wireless LAN 2100 3A Mini PCI
Adapter - Packet Scheduler
Miniport)\Packets/sec”
(from performance log)

2 Raw data: packets or variables for
traffic volumes per second Computed
variable: intensity ratio of incoming
traffic volume to outgoing traffic
volume per second

1. Network Interface(Intel[R]
PRO_Wireless LAN 2100 3A Mini PCI
Adapter - Packet Scheduler
Miniport)\Packets Received/sec
2. Network Interface(Intel[R] PRO_100 VE
Network Connection - Packet Scheduler
Miniport)\Packets Received/sec
3. Network Interface(MS TCP Loopback
interface)\Packets Received/sec
4. Network Interface(Intel[R]
PRO_Wireless LAN 2100 3A Mini PCI
Adapter - Packet Scheduler
Miniport)\Packets Sent/sec
5. Network Interface(Intel[R] PRO_100 VE
Network Connection - Packet Scheduler
Miniport)\Packets Sent/sec
6. Network Interface(MS TCP Loopback
interface)\Packets Sent/sec”
(from performance log)

3 Raw data: a sample per second from a
variable measuring network resource
utilization in CPU

Not available.

4 Raw data: a sample per second from a
variable measuring network resource
utilization in CPU by a particular
application such as web server

Not available directly. 'Server
bandwidth' for FTP server is the closest
available. Similarly, we could have a
variable for web service.

5 Raw data: a sample per second from a
variable measuring network resource
utilization in storage or length of buffer
(directly linked to response time)

Not available

6 Raw data: a sample per second from a
variable measuring network resource
utilization in storage or length of buffer
(directly linked to response time) by a
particular application such as web
server

Not available

 97

7 Raw data: a sample per second from a
variable measuring network resource
utilization in communication bandwidth

Not available (Network interface/
current bandwidth gives the total
bandwidth of the interface, not the used
bandwidth. Thus, it is not useful)

8 Raw data: a sample per second from a
variable measuring network resource
utilization in communication bandwidth
by a particular application such as web
server

Not available

9 Raw data: "Destination Port" in the
TCP header of each incoming packet to
a host Computed variable: Access
intensity (access count per second) to
more common ports (www, email, etc.)

TCP packet header – SRC_PORT
(in the network data log, extracted
using c program)

10 Raw data: "Destination Port" in the
TCP header of each outgoing packet
from a host Computed variable: Access
intensity (access count per second) to
more common ports (www, email, etc.)

TCP packet header – DEST_PORT
(in the network data log, extracted
using c program)

11 Raw data: "Destination Port" in the
TCP header of each incoming packet to
a host Computed variable: Access
intensity (access count per second) to
less common ports (all others)

TCP packet header – SRC_PORT
(in the network data log, extracted
using c program)

12 Raw data: "Destination Port" in the
TCP header of each outgoing packet
from a host Computed variable: Access
intensity (access count per second) to
less common ports (www, email,
others?)

TCP packet header – DEST_PORT
(in the network data log, extracted
using c program)

13 Raw data: "Event Type" of each audit
event record on a host Computed
variable: Intensity (number of events
per second) of more common event
types

In each of application/system/security
logs – the “event id field number
(extracted using program)

14 Raw data: "Event Type" of each audit
event record on a host Computed
variable: Intensity (number of events
per second) of less common event types
(all others)

In each of application/system/security
logs – the “event id field number
(extracted using program)

15 Raw data: a variable measuring host
resource utilization (a sample per
second) in CPU

“Processor(_Total)\% Processor Time” -
from performance log

 98

16 Raw data: a variable measuring host
resource utilization (a sample per
second) in storage

Not available

Activity pattern measures
17 Raw data: "Destination Port" in the

TCP header of each incoming packet to
a host Computed variable: Frequency
ratio of more common ports (web,
email, and others?) to less common
ports (all others) on a host Computation
method: 1) initialize the ratio with the
average ratio in a noise condition, 2)
update the ratio with each packet using
"Destination Port" and EWMAn=(1 if
common or 0 if not + 0.3*EWMAn-1)/
(1 if uncommon or 0 if not +
0.3*EWMAn-1)

TCP packet header – SRC_PORT”
(in the network data log, extracted using
c program)

18 Raw data: "Destination Port" in the
TCP header of each outgoing packet
from a host Computed variable:
Frequency ratio of more common ports
(define?) to less common ports (all
others) on a host Computation method:
1) initialize the ratio with the average
ratio in a noise condition, 2) update the
ratio with each packet using
"Destination Port" and EWMAn=(1 if
common or 0 if not + 0.3*EWMAn-1)/
(1 if uncommon or 0 if not +
0.3*EWMAn-1)

TCP packet header – DEST_PORT
(in the network data log, extracted using
c program)

19 Raw data: "Event Type" of each audit
event record on a host Computed
variable: Frequency ratio of more
common event types to less common
event types (all others) on a host
Computation method: 1) initialize the
ratio with the average ratio in a noise
condition, 2) update the ratio with each
event using "Event Type" and
EWMAn=(1 if common or 0 if not +
0.3*EWMAn-1)/ (1 if uncommon or 0 if
not + 0.3*EWMAn-1)

“Event id field number” extracted from
security, system and application log.
(extracted using c program and also the
computational method defined has been
implemented)

 99

20 Raw data: Each string entry in the
Windows Security/Application/System
log Computed variable: Frequency ratio
of more common entry types to less
common entry types (all others) on a
host Computation method: 1) initialize
the ratio with the average ratio in a
noise condition, 2) update the ratio with
each entry using the entry type and
EWMAn=(1 if common or 0 if not +
0.3*EWMAn-1)/ (1 if uncommon or 0 if
not + 0.3*EWMAn-1)

Registry, security logs, the start of each
new string
EX: Registry log –Explorer.exe
 Security log –Image file name like
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE

21 Raw data: each file name appearing in ?
log or counter on a host Computed
variable: Frequency ratio of common
files to less common files (all others) on
a host Computation method: 1)
initialize the ratio with the average ratio
in a noise condition, 2) update the ratio
with each file name appearance using
"Event Type" and EWMAn=(1 if
common or 0 if not + 0.3*EWMAn-1)/
(1 if uncommon or 0 if not +
0.3*EWMAn-1)

Security log –Image file name like
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE

22 Raw data: "Event Type" of each audit
event record on a host Computed
variable: Frequency ratio of more
common event types to less common
event types (all others) on a host
Computation method: 1) initialize the
ratio with the average ratio in a noise
condition, 2) update the ratio with each
file name appearamce using "Event
Type" and EWMAn=(1 if common or 0
if not + 0.3*EWMAn-1)/ (1 if
uncommon or 0 if not + 0.3*EWMAn-1)

Done already in 19

4.5.2.3 Wavelet Analysis

 The purpose of wavelet analysis is to convert the time series data into frequency
(retaining the time domain information) and analyze the pattern of the input data and also the
different frequency components and the signal strengths of them.
 The wavelet shapes of the transformations we use are shown in Figure 26.

 100

Figure 26. Wavelet shapes of transformations

 We describe the method adapted for implementing each wavelet transform next.

Haar: The transformation into the additive and difference components was done
successively till the nearest power of 2 in the observations for each variable in the performance
log and the frequency components were defined such that the difference terms in each iteration
forms one set of frequency.

Morlet,Paul and DOG: The transformation was done as per the equation of the mother
wavelet for each of the 3 transforms. Totally 29 different scales (each representing one frequency
component) were designed ranging from 2 to 256 to convert time series data into frequency.

We draw two types of results for this analysis: Pattern based on visual inspection of time
series plot and variations in signal strength based on visual inspection of wavelet power
spectrum.

For pattern based on visual inspection of time series plot, the results indicate the
following patterns in the numerical data obtained from the performance log across all the 6
attacks considered.

• Step change 10-15%
• Random fluctuations 25-35%
• Spike change 40-45%
• Steady change 2 to 5%

For these overall percentages, the pattern looks the same in all 3 phases, where as
individual variables may differ between each phase. These patterns are shown in Figure 27,
which just gives an example of the basic shape of the pattern, and is not meant to be considered
in detail.

a) Haar b) Paul

c) DOG d) Morlet

 101

Figure 27. Examples of basic shapes of signal patterns

 For variations in signal strength based on visual inspection of wavelet power spectrum,
the signal strength is analyzed based on how frequently it changes and in which frequency band
it falls.

The tables below will indicate the presence of variations in signal strength in 3 different
frequency bands.

1. High pass band –indicating that the variations in the time series data are rapid and
one has to look at high frequency components to analyze the data. .

2. Medium pass band –indicating that the fluctuations in the time series data are
moderate and one has to look at medium frequency components to analyze the
data.

3. Low pass band - indicating that the fluctuations in the time series data are slow
and one has to look low frequency components to analyze the data.

Note: Low frequency components can be used as a characteristic to detect slow and
stealthy versions of a cyber attack.

For the observations in the table, uniformly spread in all bands indicates that time series
data has all frequency components with equal strengths and one has to analyze all of them.
Dominant high/low pass band indicates that these particular frequency components are strong in
the time series data and the data can be analyzed with these components. Low and high pass
band indicates that both low and high frequency components are strong and the data can be
analyzed with them.

a) Step change b) Random fluctuations

d) Steady change c) Spike

0

2

4

6

8

1

1

-

0

1

2

3

4

5

6

7

8

9

-

0

2

4

6

8

 102

Table 50-Table 55 give the analysis results for pattern and signal strength covering all

wavelet methods and variables.

Table 50. EZPublish Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

Spike, step change,
random fluctuations
and steady change

Spike, step change,
random fluctuations
and steady change

Spike, step change,
random fluctuations
and steady change

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Low and high pass
bands

Uniformly spread in
all bands

Table 51. NMAP Scanner Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

Spike, step change
and random
fluctuations. One
variable shows steady
increase.

Spike, step change,
random fluctuations
and steady change

Spike, step change
and random
fluctuations and
steady increase

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Dominant high pass
band

Uniformly spread in
all bands

Table 52 Netbus Trojan Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

 Spike, step change,
random fluctuations
and steady increase

 Spike, step change,
random fluctuations
and steady change

Spike, step change,
random fluctuations
and steady increase

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Low and high pass
band

Uniformly spread in
all bands

 103

Table 53. Meteor FTP Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

 Spike, step change ,
random fluctuations
and steady increase

 Spike, step change,
random fluctuations
and steady change

Spike, step change ,
random fluctuations
and steady increase

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Dominant high pass
band

Uniformly spread in
all bands

Table 54. IRC Chat Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

 Spike, step change ,
random fluctuations
and steady increase

 Spike, step change,
random fluctuations
and steady change

Spike, step change ,
random fluctuations
and steady increase

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Dominant low pass
band

Uniformly spread in
all bands

Table 55. ARP Poison Attack

PHASE PRE ATTACK ATTACK POST ATTACK
Pattern based on
visual inspection of
time series plot

 Spike, step change ,
random fluctuations
and steady increase

Spike, step change,
random fluctuations
and steady change

Spike, step change ,
random fluctuations
and steady increase

Variations in signal
strength based on
visual inspection of
wavelet power
spectrum

Uniformly spread in
all bands

Dominant low pass
band

Uniformly spread in
all bands

For each attack, we describe an example variable with an observed pattern that changes

between phases.
EZPublish: Example variable, physical disk - idle time (step decrease), involves reading a

file from the victim machine. Physical disk/idle time represents percentage of time in sample
interval that the disk is idle. During normal phase, the only activity on disk is writing the log
files. During the attack, a new file is accessed, causing a step down change in this variable.

 104

NMAP Scanner: Example variable, connections reset/sec (staircase). NMAP sends SYN
packets to different ports and resets connections once it receives a response. This leads to an
increase in connections reset/sec in NMAP. Thus, this is a staircase like step increase.
 Netbus Trojan: Example variable, process (svchost) IO write operations per sec (step
increase), represents amount of data written to a remote destination over the network. This
represents the screen dump data sent to the attacker from the victim, after netbus is installed.
Screen dump is just an image file showing the current desktop of the victim to the attacker.
 Meteor FTP: No significant change can be noticed in variables in performance log for
this attack. The attack only involves one string sent over the network and crash in FTP server.
However, since the normal phase does not have any network/ftp server activity, no difference is
seen.

IRC Chat: Example variable, network interface packets sent/sec (up-spike at regular
intervals). Pings are sent between client/server at regular intervals to maintain connection. This
leads to a spike at regular intervals in this variable.

ARP Poison: Since ARP update packets are the only network activity, this is not reflected
in performance logs. Thus, no significant change can be seen in any variable.

4.5.2.4 ANOVA Analysis

In general, the purpose of analysis of variance (ANOVA) is to test for significant

differences between averages. If we are only comparing two averages, then ANOVA will give
the same results as the t-test for independent samples (if we are comparing two different groups
of cases or observations), or the t-test for dependent samples (if we are comparing two variables
in one set of cases or observations)

The method we use considers only the main effects, ignoring the interaction term. We
analyze the first order (non interactive) effect of 2 categorical independent variables (phase and
frequency) on the dependent variable (response) which is the energy of wavelet coefficients.

The independent variables (factors) are
• Phase – pre attack, attack and post attack
• Frequency – 29 different scales (each representing a frequency) of the mother

wavelet for 3 types of wavelets Morlet, Derivative of Gaussian and Paul.
The dependent variable is:

• Energy of the wavelet coefficients (sum of the squares) for each of the 29
different frequency components and 3 different phases.

The input to our ANOVA analysis is thus described in Table 56.

 105

Table 56. Input table to ANOVA

Phase Frequency Energy value(response)
1
1
.
.
1

1
2
.
.

29

Values corresponding to
each frequency (total 29)
for pre attack phase

2
2
.
.
2

1
2
.
.

29

Values corresponding to
each frequency (total 29)
for attack phase

3
3
.
.
3

1
2
.
.

29

Values corresponding to
each frequency (total 29)
for post attack phase

Table 57-Table 62 give the number of variables found significant in the ANOVA main

effects analysis for each attack, using the independent variables described above. Following each
table is a summary of the findings. Here, again, we are presenting our findings. A full discussion
and critical evaluation of all findings is outside the scope of this project and only included in our
future work.

Table 57. EZPublish Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 78 72.8 68.8 81 80.3 80.3 80.8 79.2 74.5 Percentage
significant
variables
(Local)

Frequency 19.1 19.6 20.6 22.2 21 15.9 20.2 22.1 20.1

Phase 85.1 58.3 50.4 91.6 61.8 60.1 90.5 62 57.2 Percentage
significant
variables
(Remote)

Frequency 19.4 16.7 10.7 13.6 13 7.7 20.4 16.5 8.1

Table 57 summary:

• Significant variables are very high in phase factor compared to frequency.
• 75 to 80% of input variables are significant in phase on an average.
• 10 to 20% of input variables are significant in frequency on an average.
• Compared to Morlet, Paul and DOG wavelets show more significant variables in

phase.

 106

Table 58 NMAP Scanner Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 46 44.
4

60.3 62.4 73.1 87.2 58.6 66.9 84.
1

Percentage
of significant
variables
(Local) Frequenc

y
30.7 32.

7
37.5 26.7 25.5 35.3 32.4 33.6 39.

2
Phase 61.1 51.

5
60.4 83.5 71.6 89.1 74.3 69.2 79.

7
Percentage
of significant
variables
(Remote)

Frequenc
y

44.8 35.
1

33.3 31.7 19.4 22.6 49.8 36 37.
7

Table 58 Summary:

• Significant variables are higher in phase factor compared to frequency.
• 65-70% of input variables are significant in phase on an average.
• 25-35% of input variables are significant in frequency on an average.
• There is a large difference in the number of significant variables in DOG wavelet

(remote) between phase and frequency compared to other two.

Table 59. Netbus Trojan Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 68.7 59.
4

51.7 90.6 88.1 77.8 84.9 79.8 72.
1

Percentage
of significant
variables
(Local) Frequenc

y
39.5 30 31.4 36.1 22.2 23.7 41.6 31.8 32.

3
Phase 64.8 69.

6
57.5 87.1 88.1 55.3 77.1 77.7 74.

4
Percentage
of significant
variables
(Remote)

Frequenc
y

48.4 35.
9

22.4 29.7 23.3 15.9 49.3 37.1 31.
2

Table 59 Summary:

• Significant variables are very high in phase factor compared to frequency.
• 70-75% of input variables are significant in phase on an average.
• 25-35% of input variables are significant in frequency on an average.
• Significant variables in frequency are relatively high compared to other attacks.
• DOG shows higher significant variables in phase compared to other two in local

and remote scenario.

 107

Table 60. Meteor FTP Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 59 60.7

69 61.3 68.3 84.2 61.2 61.9 77.
2

Percentage
of significant
variables
(Local)

Frequenc
y

17 21.3 22.
9

15.2 14.9 20.5 18.7 23.7 22.
7

Phase 79.8 70.8 81.
7

81.9 84.3 89.1 81.7 76.3 85.
1

Percentage
of significant
variables
(Remote)

Frequenc
y

19.9 27.3 33.
9

16.5 20.6 27.3 18.9 24.6 35.
8

Table 60 Summary:

• Significant variables are very high in phase factor compared to frequency.
• 65-75% of input variables are significant in phase on an average.
• 20-25% of input variables are significant in frequency on an average.
• In DOG the significant variables for frequency factor are less compared to the

other two.

Table 61. IRC Chat Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 70.4 58.
7

42.3 94 92.2 80.4 81.3 77.4 68.
4

Percentage
of significant
variables
(Local) Frequenc

y
39.9 34.

8
31.3 33.4 29.9 29.5 40.6 37.9 34.

2
Phase 61.9 67.

9
44.2 88.9 92.7 81.9 77.1 83.6 75 Percentage

of significant
variables
(Remote)

Frequenc
y

37.2 42.
4

34.9 31 39.1 32.6 39.5 46.4 40.
2

Table 61 Summary:

• Significant variables are high in phase factor compared to frequency.
• 70-80% of input variables are significant in phase on an average.
• 30-40% of input variables are significant in frequency on an average.
• Number of significant variables for frequency factor is higher than all other

attacks except ARP poison and Netbus trojan.

 108

Table 62. ARP Poison Attack

Type of wavelet Morlet DOG/Mexican hat Paul
Machine 01 02 03 01 02 03 01 02 03

Phase 47.3 54.
5

49.2 69.4 82.9 84.3 61.4 71.2 79.
1

Percentage
of significant
variables
(Local) Frequenc

y
25.7 23.

6
31.9 24.4 21.9 24.7 25.3 28.3 32.

5
Phase 69.1 34.

6
52.9 94.3 55.1 75.8 83.8 48.1 65.

2
Percentage
of significant
variables
(Remote)

Frequenc
y

43.4 19.
7

22.2 37.5 22.5 17.5 44.3 22.6 24.
7

Table 62 Summary:

• Significant variables are high in phase factor compared to frequency
• 60-70% of input variables are significant in phase on an average.
• 25-30% of input variables are significant in frequency on an average.
• Number of variables significant in phase is much higher for DOG compared to

other two.

We again give an example variable from each attack that shifts between phases and

include a “best guess” at why this is so based on our attack profiling effort.
Example of variables for EZPublish results are for phase, network interface packets/sec

and frequency: TCP connections reset. Here the client connects to the server and reads a file
back. This involves a TCP connection being established. Hence variables show a difference in
the attack phase. In the pre attack phase, there are no connections made so no data transfers.

Example of variables for NMAP results are for phase, TCP connections established and
frequency, TCP Connections reset. In Nmap, a series of TCP connections are made and reset
during the attack. Thus, the variables TCP connections established (phase) ad connections reset
(freq) can be used to differentiate the attack from the other two phases.

Example of variables for Netbus results are for phase, network interface packets sent/sec
and frequency, network interface bytes sent/sec. In the Netbus Trojan attack, an installation file
is copied from attacker to victim leading to network data transfer. Also, the victim’s screendump
is sent to the attacker over the network in the attack phase. Thus, both these variables differ
between attack phase and pre attack phase.

Example of variables for Meteor FTP results are for phase, network interface packets
sent/sec and received/sec and frequency, network interface packets / sec. These variables reflect
network activity. During the attack, the attacker sends a long string over the network, which is
reflected in these variables. During the pre attack/post attack phases, there is no such activity.

Example of variables for IRC Chat results are for phase, TCP connections established. In
this attack, clients connect to the server during the attack phase. This increases the number of
connections established at the server. This variable can thus be used to distinguish attack phase
from normal phase. For frequency, network interface packets sent/ sec. During the attack, after

 109

connection is established between clients and server, ping packets are sent at regular intervals,
which are reflected in the above variable.

Example of variables for ARP Poison results are for phase, network interface packets
sent/ sec. In this attack, an ARP packet is sent at regular intervals to the victim machine. Thus,
this reflects in the network interface packets sent/sec variable in the attack phase. In the pre
attack and post attack phases, there is no such activity. Thus this variable can be used to
differentiate phases. For frequency, process (svchost) IO other bytes /sec. This variable shows
the amount of bytes sent over the network through thesvchost processes. This is indicative of the
ARP packets received during the attack. These packets are not received during the pre
attack/post attack phases.

4.6 Summary

This section gives results of our research on discovering the characteristics of cyber
signal and noise for cyber signal detection. We describe how we go from attack profiling (our
previous section), to generalizing the DFCs of attacks, to applying knowledge from physical
space signal detection to the analysis of data and verification of cyber signals. In our analysis, we
have applied new techniques for detecting cyber attack observables, and discovered a number of
DFCs that are useful in detecting and identifying these observables. Detecting a single
observable is just the basis for developing a suite of cyber sensors. Many observables for cyber
attacks are also found in normal data. This is why we need to develop a full understanding of the
characteristics of both attack and norm data, and then group sensors (based on these observables)
in such a way that false alarms are reduced, while maintaining detection accuracy.

We provide a sampling of our data analysis results. The actual amount of results that we
have collected thus far is well beyond the scope of this report. Therefore, we attempt to
summarize some key examples of how we are using the data we have collected to extract
characteristics of cyber signals. The purpose of this investigation is to find characteristics and/or
groups of characteristics that can uniquely identify attacks or classes of attacks. We use these
results to build our sensor models, as described in the next section.

5. Sensor and Sensor Fusion Models

In the last section on the discovery of characteristics of cyber signal and noise we
described how to go from attack profiling, to generalizing the DFCs of attacks, to applying
knowledge from physical space signal detection to the analysis of cyber attack data. That section
gives a sample of our results on the analytical discovery of characteristics of cyber signals.
Previous sections on attack profiling and the analytical discovery of cyber attack and normal use
characteristics provide us with the ability to develop sensor models and sensor fusion models for
cyber attack detection. First we give some relevant background material. Then provide examples
of sensor and sensor fusion models. Finally, we conclude this section.

 110

5.1. Background

 In this section we give the background information necessary to understand the sensor
and sensor fusion models presented in this section. We first introduce 2 user activities to our
dataset. We then present the 3 previously described attacks we consider for this work. Finally,
we outline the analytical discovery methods used here.

5.1.1 Activity Data

To design and test a sensor model, in addition to attack data characteristics, we require

the characteristics of normal user activity data. For this section, we consider 2 common
activities: web browsing and text editing. During the simulation of an attack as described in
previous sections, we have a user conducting the respective activity at the victim machine. The
user activity continues throughout the simulation phases. This way, we are able to collect data
with only user activity, and data with both attack and user activity. With the user activity data we
discover characteristics of normal use (noise). The analysis for user activity is the same as the
analysis we reported for attack activity. We use the analytical results from both user activity and
attack data to build models. The combined data is for testing our models.

5.1.2 Attack Data

We use data collected from 3 attacks simulated in the lab: ARP Poison, EZPublish
Confidentiality and NMAP Scanner. These attacks are simulated without user activity, as stated
previously, to discover attack characteristics. We choose these 3 attacks arbitrarily from our
attack data set and simulate them again with user activity for testing. (We do not include testing
on all 6 attacks in this report due to time constraints).

5.1.3 Analytical Discovery

Previously we described how to profile attacks and obtain the DFC of an attack. We

simulated several attacks and, using analytical discovery methods, derived matrices of observed
DFCs for each attack. For each DFC, we have multiple choices of detection method. In this
section, we consider the DFCs for the 3 attacks described above. We select analysis methods to
build our sensor models upon and describe them below. These two methods use the techniques:
Paul wavelet, cuscore and autocorrelation. These are described previously in detail and
summarized here.

Method 1 – Wavelet with Cuscore
Wavelet analysis converts time series data into frequency and analyzes the pattern of the input
data, and the different frequency components and their signal strengths. We choose the Paul
wavelet transformation based on its superior performance in our previous analysis.

 111

Method 2 - Autocorrelation
“Autocorrelation is the expected value of the product of a random variable or signal realization
with a time-shifted version of itself” (http://cnx.rice.edu/content/m10676/latest/). We use
autocorrelation analysis to detect whether a variable changes its autocorrelation between the pre-
attack (pre-activity) and attack (activity) phases of our simulation.

5.2 Sensor Models

We developed sensor models using the data we colleted in our attack simulations. The
sensors are first developed and tested with offline data, as shown in Figure 28. After finalizing a
sensor model offline, we verify that the sensor works online, with data collected in real time
during an attack. Our online simulations have a similar setup to offline simulations. The only
difference is that the sensor models are reading data as it occurs, and reacting accordingly,
instead of waiting until all data is collected.

Figure 28. Building sensor models offline

We develop sensor models using data from 3 attacks and the DFC and detection

techniques described in the previous section. We include the 2 user activities in our testing
phase. We first build a model using Paul wavelets and the Cuscore statistic. We then build a
model using autocorrelation and the Cuscore statistic. Table 63 describes the DFC mapping for
the sensor models presented in this section.

 112

Table 63. DFC Mapping for Sensor Models

Sensor Model Paul Wavelet & Cuscore
Noise Model Attack Model

Data Raw data variable Raw data variable
Feature y = Energy Frequency y = Energy Frequency
Characteristic

Sensor Model Autocorrelation & Cuscore
Noise Model Attack Model

Data Raw data variable Raw data variable

Feature
y = Mean # of significant
autocorrelation functions

y = Mean # of significant
autocorrelation functions

Characteristic 0tt aTy +=

tt aTy ++= δ

tt aTy ++= δ0tt aTy += tt aTy ++= δ

0tt aTy +=

5.2.1 Model Based on Paul Wavelet & Cuscore Statistic

The steps outlined below describe our first detection model. These steps are also outlined
in Figure 29:

1. From our analysis previously detailed, we find that Paul is the most useful wavelet
because most of the data form a spike pattern.

2. We pick variables discovered through sensor optimization (following section) and begin
by extracting the variables from our data sets individually and storing them as a text file.
This input file is a time series data with 500-600 observations.

3. The input is given to a wavelet program to calculate the Paul wavelet coefficients.
4. Once data is transformed into the wavelet domain, the wavelet coefficients are converted

into energies by squaring and summing. These calculated energy values in the wavelet
domain define the feature that is tested in this model.

5. The characteristic we observe for all selected variables is a step change. Thus, we choose
the Cuscore statistic for step change as our detection model.

6. This model is basically the summation at each point of the difference between each
observation and a threshold obtained from the normal scenario. This model has an
implicit noise filtering component because the difference is calculated based on a
threshold derived from the normal model.

7. The calculated wavelet energy values form the observations for Cuscore. We obtain
cuscore values and plot them to identify the step change.

 113

Figure 29. Steps for the Paul wavelet & Cuscore statistic model.

5.2.2 Model Based on Autocorrelation & Cuscore Statistic

 Our next detection model uses autocorrelation with the same Cuscore for step change as used in the

previous model. The steps are outlined as follows and shown in
Figure 30:

1. We choose variables and analytic discovery methods based on our sensor optimization
study (following section).

2. We extract variables and store them in text file formats.
3. We separate the extracted normal activity datasets into two sections. The first half serves

as training data to calculate the normal mean in the Cuscore model, while the latter is
used, along with data from normal+attack activity, for testing.

4. The numbers of significant autocorrelation functions are calculated on both data using the
moving window method, with a window of size 60 observations. The means of the
numbers of significant autocorrelation functions are calculated for the input to Cuscore.

5. We plot the Cuscore results for each sensor to observe false alarms, signal indications
and first indications of attacks.

Selected
variable –Raw
attack data

Wavelet coefficients-
using Paul wavelet
transforms

Wavelet energy-
sum of squares of
the wavelet
coefficients

Threshold for detection-
mean of first half of
wavelet energies from
normal activity data

Cuscore for step
change.

 114

Figure 30. Steps for the autocorrelation & Cuscore statistic model.

5.3 Sensor Fusion Models

We develop our fusion and decision theory based on the unique vector or specific
knowledge about the attack rather than a general, existing decision or fusion theory. To perform
sensor fusion, we consider the results of our 2 sensor models described previously. During our
attack simulations, we collect data both locally at the victim computer, and remotely. For remote
data collection, performance data from the victim machine is sent across the network and logged
at another location. We present our results for both collection methods for these sensor models.
Our threefold objective is to determine which sensor model gives: The highest detection rate, the
lowest false alarm rate, and the earliest signal detection

In this section we present the results for testing observables identified in our sensor
optimization efforts (following section). These results include specific variables and detection
methods identified as sufficient to detect and differentiate the 3 attacks with 2 user activities
described previously.

Selected
variable –
Raw attack
data

The numbers of
significant autocorrelation
functions using moving
window of size 60

Threshold for detection –
mean of first half of number
of significant autocorrelation
functions from normal
activity data

CUSCORE
value based on
autocorrelations

 115

 Table 64 lists the sensors we develop and tests completed for each sensor.

Table 64. Sensor testing outline

Sensor
Sensor Model Data Variable Attack Activity

Data
Collection
Local Web

Browsing Remote
Local

1 Paul Wavelet Process(_total)IO other
operations/sec

ARP
Poison

Text Editing
Remote
Local Web

Browsing Remote
Local

2 Paul Wavelet TCP\Segments/sec EZ
Publish

Text Editing
Remote
Local Web

Browsing Remote
Local

3 Autocorrelation

Network Interface(Intel[R]
PRO_100 VE Network
Connection - Packet Scheduler
Miniport)\Bytes Sent/sec

ARP
Poison

Text Editing
Remote
Local Web

Browsing Remote
Local

EZ
Publish

Text Editing
Remote
Local Web

Browsing Remote
Local

4 Autocorrelation
Terminal Services
Session(Console)\Page
Faults/sec

NMAP
Text Editing

Remote

We have checked that all characteristics for the sensors in Table 64 do not appear in the
characteristics for normal activities, and thus are indicative of an attack for our data set. In this
section, we first present the testing results for our sensor models, and then offer some
observations for sensor fusion on these sensors.

5.3.1. Testing Results

This section separates the results obtained by each of our 3 sensor models. Each section
includes the Cuscore charts for each variable, attack, activity, and local/remote configuration.
For each plot in this section, the following descriptions hold:

1. The x-axis is observations in time.
2. The y-axis is the Cuscore value.
3. The first 287 observations are normal activity data to check false alarm pattern and the

rest of the observations form the attack data.
4. The figure name gives the name of the observed variable, the attack and user activity

present, and whether the data is from a local or remote collection.
We use the results shown in Figures 30-49 to complete Table 65 and Table 66, from which we
make observations for sensor fusion.

 116

5.3.1.1 Paul Wavelet & Cuscore Statistic

The Cuscore results for this model are shown in Figure 31-Figure 38.

Figure 31. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Local.

Figure 32. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Remote.

 117

Figure 33. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Local.

Figure 34. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Remote.

 118

Figure 35. TCP\Segments/sec, EZPublish, Web Browsing, Local.

Figure 36. TCP\Segments/sec, EZPublish, Web Browsing, Remote.

 119

Figure 37. TCP\Segments/sec, EZPublish, Text Editing, Local.

Figure 38. TCP\Segments/sec, EZPublish, Text Editing, Remote.

 120

5.3.1.2 Autocorrelation & Cuscore Statistic

 The Cuscore results for this model are shown in Figure 39-Figure 50.

Plot of variable: Bytes Sent/sec_Web_Local

0 100 200 300 400 500 600 700 800 900

Case Numbers

-2500

-2000

-1500

-1000

-500

0

500

B
ytes S

ent/sec_W
eb_Loc

-2500

-2000

-1500

-1000

-500

0

500

Figure 39. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Local.

Plot of variable: Bytes Sent/sec_Web_R

0 100 200 300 400 500 600 700 800 900

Case Numbers

-500

0

500

1000

1500

2000

2500

B
ytes S

ent/sec_W
eb_R

-500

0

500

1000

1500

2000

2500

Figure 40. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Remote.

 121

Plot of variable: Bytes Sent/sec_Text_Local

0 100 200 300 400 500 600 700 800 900

Case Numbers

-100

-50

0

50

100

150

200

250

300

350

400

B
ytes S

ent/sec_Text_Loca

-100

-50

0

50

100

150

200

250

300

350

400

Figure 41. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Local.

Plot of variable: Bytes Sent/sec_Text_R

0 100 200 300 400 500 600 700 800 900

Case Numbers

-500

0

500

1000

1500

2000

2500

B
ytes S

ent/sec_Text_R

-500

0

500

1000

1500

2000

2500

Figure 42. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Remote

 122

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local

0 50 100 150 200 250 300 350 400

Case Numbers

-600

-400

-200

0

200

400

600

800

Term
inal S

e

-600

-400

-200

0

200

400

600

800

Figure 43. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing,

Local.

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Remote

0 50 100 150 200 250 300 350 400

Case Numbers

-600

-500

-400

-300

-200

-100

0

100

200

Term
inal S

-600

-500

-400

-300

-200

-100

0

100

200

Figure 44. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing,

Remote.

 123

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local

0 50 100 150 200 250 300 350

Case Numbers

-50

0

50

100

150

200

250

300

350

Term
inal S

e

-50

0

50

100

150

200

250

300

350

Figure 45. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing,

Local.

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Remote

0 50 100 150 200 250 300 350

Case Numbers

150

200

250

300

350

400

450

500

550

600

Term
inal S

150

200

250

300

350

400

450

500

550

600

Figure 46. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing,

Remote.

 124

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local

0 100 200 300 400 500 600 700 800 900

Case Numbers

-1000

-500

0

500

1000

1500

Term
inal S

e

-1000

-500

0

500

1000

1500

Figure 47. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing,

Local.

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Remote

0 100 200 300 400 500 600 700 800 900

Case Numbers

-1000

-500

0

500

1000

1500

2000

2500

3000

Term
inal S

-1000

-500

0

500

1000

1500

2000

2500

3000

Figure 48. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing,

Remote.

 125

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local

0 100 200 300 400 500 600 700 800 900

Case Numbers

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

Term
inal S

e

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

Figure 49. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing,

Local.

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Remote

0 100 200 300 400 500 600 700 800 900

Case Numbers

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Term
inal S

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Figure 50. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing,

Remote.

 126

5.4 Sensor Fusion

In this section we include the performance summaries of our sensor models in Table 65
and Table 66. From these tables we can make observations for sensor fusion.

Table 65. Paul wavelet and Cuscore statistic

Data Collection Local Remote
Attack ARP EZPublish ARP EZPublish

Variable Process TCP Process TCP
Web browsing
False alarm indications 0 5 2 6
Signal indications 1 2 4 1
First observation of signal 288 312 300 292
Text editing
False alarm indications 0 0 2 2
Signal indications 1 1 5 2
First observation of signal 288 288 288 288

Table 66. Autocorrelation and Cuscore Statistic

Data Collection Local Remote
Attack ARP EZPublish NMAP ARP EZPublish NMAP

Variable Network Terminal Terminal Network Terminal Terminal
Web browsing
False alarm indications 2 3 1 5 2 2
Signal indications 5 1 9 7 1 5
First observation of signal 297 311 295 466 297 313
Text editing
False alarm indications 6 2 1 3 4 0
Signal indications 8 2 3 6 1 4
First observation of signal 355 291 301 287 301 385

During our study, we observe that network variables are affected by remote data

collection. Furthermore, we observe consistently throughout our analytical research that using
the local data (as opposed to remote) gives better attack detection for the variables considered in
these sensor models. Thus, from the results presented in Table 65 and Table 66 we make some
example observations for sensor fusion based on the local data collection results.

Note that for the ARP attack, the wavelet sensor detects the attack at data point 288,
whereas the autocorrelation sensor does not detect it until points 297 during web browsing, and
355 during text editing. Thus, under each of these activities, the fused model of these two sensors

 127

would not flag this attack using these variables until times 297 and 355 respectively. Thus, both
sensors must observe the attack signal for detection.

For the EZPublish attack autocorrelation is the early detector during web browsing and
wavelet during text editing. Thus, the earliest attack detection time for this attack, based on the
last sensor detection, is 312 for web browsing and 291 for text editing.

The NMAP attack has only one sensor in this optimized model set, and thus there is no
sensor fusion for this attack alone.

5.5 Conclusion

In this section, we have extended our analytical discovery results to develop sensor

models for cyber attack detection. We test these models under 2 user activity and 2 data
collection method conditions. The sensor models we design are based on the sensor optimization
section. These sensors are the minimum required to detect and distinguish between the 3 attacks
presented in this section. The sensor models we provide are merely samples. There are many
other possible models we can develop and test based on our analytical discovery. These methods
of sensor model development and fusion can be extended to include any attack or user activity
for which we have identified DFCs to identify that activity.

6. Optimized Suite of I&W Observables/Cyber Sensors

 In a parallel study, we build sensor models for cyber attack detection. To obtain
efficiency, we desire to create the minimum number of sensors possible while maintaining
effective attack detection. We employ optimization techniques from operations research to
determine the sensor set. This section gives an example for sensor optimization using the
analytical discovery results from our previous study on cyber attack characteristics.

6.1 Sensor Matrix

 To develop an optimized suite of cyber sensors, we define a sensor matrix. An example
sensor matrix is shown in Table 67. In this matrix we used data from 7 data sets to include 6
attacks as described in our previous sections, and one data set provided by an external source.

 128

Table 67. Matrix of Cyber Sensors

 NMAP Meteor
FTP

EZ
Publish

IRC
Chat

ARP
Poison

Netbus
Trojan

Nong3

Cache\Data
Flushes/sec

 (P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)
(D,-,M)
(D,-,H)

 Diff(+)

Cache\Async Copy
Reads/sec

 LH- LH- -L-

IP\Datagrams/sec Diff(+)
(P,-,L)
(D,-,L)

 (P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)
(D,-,M)
(D,-,H)

Memory\Page
Reads/sec

 LH-
(P,-,L)
(D,-,L)

(P,+,L)
(D,+,L)

 -H-

Memory\Page
Writes/sec

 (P,+,L)
(D,+,L)

-HH

Memory\Available
Bytes

 Diff(-)
-UniUni

Diff(-)

Memory\%
Committed Bytes In
Use

 -Normal-
(P,-,L)

 -UniUni
(P,-,L)
(D,+,L)

Memory\Cache
Faults/sec

 -Normal-
(P,-,L)

 Diff(+)
LHL

Network
Interface(Intel[R]
PRO_100 VE
Network Connection
- Packet Scheduler
Miniport)\Bytes
Sent/sec

 LHL
(P,-,L)
(D,-,L)
(D,-,M)

LHL
(P,+,M)
(D,+,H)

(P,-,L)
(D,-,L)

Absent

 129

Network
Interface(Intel[R]
PRO_100 VE
Network Connection
- Packet Scheduler
Miniport)\Packets
Received
Unicast/sec

Diff(+)
(P,-,L)
(D,-,L)

(P,-,L)
(D,-,L)

 (P,+,M)
(D,+,H)

Network
Interface(Intel[R]
PRO_100 VE
Network Connection
- Packet Scheduler
Miniport)\Bytes
Total/sec

 (P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)

 (P,-,L)
(D,-,L)
(D,-,M)

Objects\Events Diff(+)
HLH

 Diff(+)

Process(_Total)\Pag
e File Bytes

 -Normal-
(P,-,L)
(D,-,L)

 -UniUni
(P,-,L)
(D,+,L)

Process(EXPLORE
R)\IO Read
Bytes/sec

 LH- LH-

Process(Meteor#1)\I
O Other
Operations/sec

Diff(+) LHL

Process(Meteor#1)\
Handle Count

Diff(+) Diff(+)

Processor(_Total)\%
Processor Time

Diff(+) Diff(+)
(P,-,L)

System\File Read
Operations/sec

LHL Diff(+)

System\System
Calls/sec

 Diff(+)
(P,-,L)
(P,-,M)
(P,-,H)
(D,+,M)
(D,+,H)

(P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)
(D,-,M)
(D,-,H)

 (P,-,L)
(D,+,L)

TCP\Segments/sec Diff(+)
(D,-,L)

 (P,-,L)
(D,-,L)

 (P,-,L)
(D,-,L)

Diff(+)

Terminal Services
Session(Console)\Po
ol Nonpaged Bytes

 Diff(+)
HLH
(P,-,L)
(D,-,L)

 Diff(+)

 130

Terminal Services
Session(Console)\In
put WdFrames

 Diff(-)
LHH

LHH
(P,-,L)
(P,-,M)
(D,-,L)
(D,-,M)
(D,-,H)

Terminal Services
Session(Console)\In
put Compressed
Bytes

 Diff(?)
LHH
(P,-,L)
(P,-,M)
(D,-,L)
(D,-,M)

LHH
(P,-,L)
(P,-,M)
(D,-,L)
(D,-,M)
(D,-,H)

Terminal Services
Session(Console)\In
put Async Frame
Error

Diff(-)
(P,+,L)
(D,-,L)

 Diff(+)
(P,+,L)
(D,+,L)

Terminal Services
Session(Console)\Pr
otocol Bitmap Cache
Hits

Diff(+)
-Normal-

 (P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)
(D,-,M)
(D,-,H)

Terminal Services
Session(Console)\Pa
ge Faults/sec

Diff(-)
HLL
(P,+,L)
(D,-,L)

HL-
(P,-,L)
(D,-,L)

Diff(-)
HLH

UDP\Datagrams/sec Diff(+)
(D,-,L)

(P,-,L)
(P,-,M)
(P,-,H)
(D,-,L)
(D,-,M)
(D,-,H)

 (P,-,L)
(D,-,L)

To simplify the display of the table, we have shortened the descriptions in the table cells.

The characteristic listed in each cell is a characteristic of the variable from column one, and the
attack data from row 1. The entries in the matrix shown in Table 67 are defined as follows:

• Entries of the form Diff(+) or Diff(-) represent a positive or negative shift in the
difference in means.

• Entries of the form XXX, where X is L, H or “-“ represent autocorrelation results
where L is low, H is high, and “-“ is none.

• Entries of the form XXX, where X is normal, uni or “-“ represent distribution results
where the distribution is with normal, uniform (uni) or unknown (-).

• Entries of the form (X,+,Y) or (X,-,Y) represent wavelet results where the first
element indicates the wavelet (P for Paul, D for DOG), the second element indicates

 131

increase (+) or decrease (-) from pre-attack to attack, and the third element indicates
the frequency band of low (L), medium (M) or high (H).

Cells with multiple entries indicate different sensor models that can be used to detect a
characteristic for that variable and that attack. When we optimize the table, if one of these sensor
“sets” is chosen, we can select which of the sensors to use. These sensors and variables are in no
particular order.

6.2 Sensor Optimization Solution

We find the smallest subset of sensors that can uniquely identify the given seven attacks.

This is our optimal collection of sensors. In this section we first present the resulting optimized
sensor matrix, and then provide a proof that this table is indeed optimal. This subset was
discovered using a manual heuristic based on finding a feasible solution and proving its
optimality. The method is revealed in the optimality proof at the end of this section. The optimal
solution is shown in Table 68. Note that the original input matrix from Table 67 held 28 sensors,
while the optimized solution leads to a smallest subset of only 4 sensors.

Table 68. Optimal Solution

Sensor
Data Variable NMAP

Meteor
FTP

EZ
Publish

IRC
Chat

ARP
Poison

Netbus
Trojan Nong3

1
Process(_total)IO other
operations/sec (P,-,L) (P,-,L) (P,-,L)

2 TCP\Segments/sec (P,-,L) (P,-,L) (P,-,L)

3

Network Interface(Intel[R]
PRO_100 VE Network
Connection - Packet
Scheduler Miniport)\Bytes
Sent/sec LH LH

4

Terminal Services
Session(Console)\Page
Faults/sec

HL HL HL

Proposition 1. The solution in Table 68 is optimal.
Proof: The structure of the given problem is the same as that of the binary identification
problem. In the binary identification problem, the minimum number of sensors that could
uniquely identify 7 different attacks is 3. (23 − 1 = 7, since (000) doesn’t count). The optimal
solution with 3 binary sensors is shown in Table 69.

Table 69. Optimal solution with 3 binary sensors

Sensor
NMAP

Meteor
FTP

EZ
Publish

IRC
Chat

ARP
Poison

Netbus
Trojan Nong3

1 0 0 1 1 1 0 1
2 0 1 0 1 0 1 1

3 1 0 0 0 1 1 1

 132

Notice that in the 3-binary-sensor case each sensor has to identify at least 4 different
attacks. However, the maximum number of attacks one type of sensor could possibly identify is
3 in the given matrix. Therefore, the solution with 4 sensors in Table 68 is optimal.

6.3 Conclusion

In this section, we have shown how to define an optimization table to minimize the

number of sensors required to detect a subset of attacks. For this small input table, it is trivial to
find the optimal set manually. For larger input tables, any number of optimization tools can be
employed for this task. Thus, optimization can be applied to any input matrix of sensors, and
thus is extensible to any number of attack and activity data characteristics provided to the
optimization problem.

7. Symantec Final Report

This final report documents the activities of Symantec Research Labs (Symantec) on the

research project of Arizona State University (ASU) for ARDA’s Cyber Indications and Warnings
program. The purpose of this project is to study techniques and develop technologies that might
provide improved indications and warnings (I&W) for cyber attacks.

After this introductory section, this final report is divided into seven sections according to
the statement of work between Symantec and ASU, describing the activities of Symantec with
respect to our contractual tasks:

• Task 1 – Collect and examine known cyber attack cases and scenarios to develop threat

and attack profiles.
• Task 2 – Discover characteristics of cyber signal and noise (attack data and normal data)

at each observable point.
• Task 3 – Investigate, develop and test sensor models of signal detection, and a sensor

fusion model for each observable point.
• Task 4 – Formulate and solve an optimization problem to select an optimized suite of

I&W observables / cyber sensors.
• Task 5 – Test and verify research outcomes using real information infrastructure data that

is available at Symantec.
• Task 6 – Provide documents that reflect monthly status and final technical report.
• Task 7 – Participate in project meetings as necessary.

The final section of this report presents a summary and conclusions. The five technical

tasks (tasks 1-5) were conducted on two separate investigations, each addressing a different kind
of attack in a different target environment from ASU’s investigation. ASU developed the cyber
signal detection approach to predictive analysis and investigated that approach. Symantec’s first
investigation employed ASU’s cyber signal detection concepts to explore insider attacks against
databases. Symantec’s second investigation employed ASU’s cyber signal detection approach to
explore virus/worm attacks in a local area network. The database investigation was focused on
insider attacks at the application layer.

 133

Symantec sought to utilize as much as possible the procedures and research outcomes
provided by ASU, evaluating those against malicious code at our disposal at Symantec. ASU
provided Symantec with their statistical analyses to run against data collected during attack
simulation. Thus, results in this section follow the same approach as described in previous
sections in this report. The relevant sections can be reviewed for more detail wherever necessary.

7.1 Task 1 – Collect and examine known cyber attack cases and scenarios to
develop threat and attack profiles.

Symantec collected and examined known cyber attack cases and scenarios to develop

threat and attack profiles in both the database domain and the virus/worm domain. In the
database domain, Symantec collected and examined attack scenarios and developed attack
profiles for insider attacks reading confidential data. In the virus/worm domain, Symantec
collected and examined attack scenarios and developed attack profiles for the Sobig e-mail virus.
The remainder of this section provides details regarding those attack scenarios and attack
profiles.

7.1.1 Database Attacks

The database investigation began with a broad examination of known cyber attacks in the
database domain. Figure 51 shows a collection of attacks, classified according to a taxonomy
developed by ASU. The attacks are given mnemonic names and are organized by
“vulnerability”.

Attack Action Target State Effects Performance Effects
Configuration

Extract-admin-data Read|Steal Data Confidentiality None
Alter-admin-tables Modify|Delete|Add Data All All
Monitor-other-DB-activities Eavesdrop Data|User Confidentiality|Availability Timeliness
Privilege-escalation-or-bypass Bypass System All All
Administrative-DOS Termination|Execute System Availability Timeliness
Corrupt-stored-procedures Modify|Delete System All All
Corrupt-native-libraries Modify|Delete System All All
Attack-os-using-DB-process-privs Bypass System All All
Install-unauthorized-components Modify System All All
Alter-admin-activities Modify|Delete|Add System All All
Corrupt-future-installations Modify|Delete|Add System All All

Specification
Probe-read-confidential-data Probe System Availability Timeliness
Probe-bypass-privilege-system Probe System Availability Timeliness
Query-flood Flood System Availability Timeliness

User Trust
Read-confidential-data Read Data Confidentiality|Availability Timeliness
Corrupt-data Delete|Modify|Add Data Integrity|Availability All

All State Effects = 'Confidentiality' | 'Availability' | 'Integrity'
All Performance Effects = 'Timeliness' | 'Precision' | 'Accuracy'
Source of threat = 'Any'
Agency = Most may be either 'Human' or 'Autonomous'
Attack Origin = 'Local' | 'Remote (single source)' | 'Remote (multiple source)'

Our focus

Figure 51. Collection of attacks for this study

 134

Because of the large number and heterogeneity of database attacks it was necessary to
focus the investigation. The “read-confidential-data” attack was selected as a primary area of
focus. This attack simply involves a user reading some confidential data for nefarious purposes.

The “read-confidential-data” attack has an infinite number of variations. Following the
pattern being used at ASU, the generic “read-confidential-data” attack was explored by creating
an attack profile. The purpose of the attack profile is to identify relevant observables and likely
features of attacks. Figure 52 shows the cause-effect chain – a graphical representation of
activity-state-performance interactions within an attack – of the attack profile for the generic
“read-confidential-data” database insider attack.

Figure 52. Attack profile for database insider attack

The observations for the generic “read-confidential data” database insider attack are
shown in Table 70.

State 1: User trust compromised

Attack Phase

Observation B :
Reconnaissance queries
by user

Activity 1: Attacker probes for valuable
data by initiating queries.

Activity 0 : Login to the database by a
trusted user

State 2: Availability compromised, by use
of shared resources

Performance 1 : Timeliness
compromised, by use of shared resources

Observation C:
Data collection queries
by user

Activity 2: Attacker queries
database/extracts valuable information.

Observation A :
Connection by DB user

 135

Table 70. Observations for database insider attack

A Connection by database user
B Reconnaissance queries by user
C Data collection queries by user

The attack profile – including DFCs for each observable point – is provided in Table 71.

Table 71. DFC’s for database confidentiality attack
OBS Indicator Data Feature Characteristic

1 Time of connection and database user ID Individual observation Outside historical range

2 EWMA of duration of connection/session by user Chi-squared distance Step change

3 Number of tables outside historic range accessed
by user within time interval t Individual observation Greater than <threshold>

4 EWMA of InterArrival Time of queries from the
same user Chi-squared distance Step change

5 EWMA of queries selecting no data within time
interval t (i.e., requested data not found) Chi-squared distance Step change

6 EWMA of size of query text Chi-squared distance Step change

7 EWMA of ratio of SELECT queries to other queries
within time interval t Chi-squared distance Step change

8 EWMA of pairwise semantic distances between
relations and attributes of successive queries Chi-squared distance Step change

9 EWMA of Number of queries using stored
procedure in time interval t Chi-squared distance Step change

10 EWMA of Number of SQL constructs used in
queries in time interval t Chi-squared distance Step change

11 Number of tables outside historic range accessed
by user within time interval t Individual observation Below <threshold>

12 EWMA of Interarrival times of queries to same table Chi-squared distance Step change

13 EWMA of Number of queries using stored
procedure in time interval t Chi-squared distance Step change

14 Ratio of rows retrieved during session to total rows
in table Mean Increase

15 Ratio of columns retrieved during session to total
columns in table Mean Increase

16 EWMA of Interarrival times of queries Chi-squared distance Step change

17 EWMA of pairwise semantic distances between
relations and attributes of successive queries Chi-squared distance Step change

18 EWMA of number of SQL constructs Chi-squared distance Step change

B

A

C

There is no data dependent relationship amongst the observations. The attack formula for

the generic “read-confidential-data” database insider attack is the following:
A(ti…j, l1) → B(tk…m, l1) → C(tn...p, l1), where i<j<k<m<n<p and l1 = host

 136

7.1.2 Virus/Worm Attacks

There are many known cyber attack cases in the virus/worm domain. Symantec as a
corporation has studied a large percentage of known examples of malicious code and produces
descriptions for many of them, available at www.symantec.com. Each malicious code attack has
specific characteristics, observables, and effects worthy of study, but clearly our investigation
could not address all such attacks. Symantec chose a representative instance of one large class of
malicious code attacks, e-mail viruses, for our virus/worm investigation.

Sobig is an e-mail virus from 2003. There were multiple variants of Sobig over the
course of that year; the particular variant that Symantec studied was Sobig.f. Like many e-mail
viruses, Sobig arrived in a user mailbox as an executable attachment within an infected e-mail.
When a user ran the executable attachment, the virus would search the hard drive for e-mail
addresses and e-mail a copy of itself to those new addresses.

The observations for the Sobig e-mail virus are shown in Table 72.

Table 72. Observations for the Sobig e-mail virus

A E-mail infected with Sobig worm received in user’s mailbox
B New process, the Sobig worm, started by user
C New files created by worm
D New values added to the startup keys of the registry
E New worm process starts and original worm process is terminated
F New event created
G New threads created
H Higher CPU utilization as threads search for e-mail addresses
I Higher file system activity as threads search for e-mail addresses
J Increased network activity as threads send out infected e-mails
K Mail activity at mail server as infected e-mails arrives
L UDP packets initiating download sent to update servers

 137

The Table 73 – including DFCs for each observable point – is provided below.

Table 73. DFC’s for Sobig
Obs Location Data Feature Characteristic

L1 New email in the user's inbox
(not monitored currently)

Individual
observation

9 possible subject lines, 9
possible attachment file names,

and 2 possible body lines A

L4 New email, with destination
email address of victim

Individual
observation

9 possible subject lines, 9
possible attachment file names,

and 2 possible body lines

B L1 Name of new process created Individual
observation Has 9 possible names

C L1 Filename of newly created file
Individual

observation

“%Windir%\ winppr32.exe”

D L1

Value of data added to registry
key

HKEY_LOCAL_MACHINE\
SOFTWARE\ Microsoft\

Windows\ CurrentVersion\ Run

Individual
observation

“TrayX”=“%Windir%\
winppr32.exe /sinc”

E L1 Name of old process terminated Individual
observation 9 possible names

 L1 Name of new process running Individual
observation “winppr32.exe”

F L1 Value of event created Individual
observation “TrayX”

G L1 Process object -> thread count
for winppr.exe process EWMA Step increase

L1 Process object -> % processor
time for winppr.exe process EWMA Step increase

H
L1 Filenames of files accessed on

disk
Type of file

accessed
One of ".dbx, .eml, .hlp, .htm,

.html, .mht, .wab, .txt"

I L1 Process object -> IO data
bytes/sec for process winppr.exe EWMA Increase

L1 IP packets sent/sec from
performance log EWMA Step increase

L2 IP packets received/sec and
sent/sec from the router’s log EWMA Step increase J

L4 IP packets received/sec from
performance log EWMA Step increase

K L4 E-mails received/sec EWMA Step increase

L L1 DEST IP field of UDP packets,
with SRC_port = 8998

Count of
unique
values

Equals 20

The attack formula for the generic “read-confidential-data” database insider attack is the

following:

A (ti, l1) || A (ti, l4) -> B (tj, l1) → C (tj..k, l1), D(tj..k, l1), E(tm, l1)
→ F (tm..n, l1), G (tm..n, l1), H (tn..p, l1), I (tn..p, l1), L (tq..r, l1)

 138

→ J (tq..r, l1) || J (tq..r, l2) || J (tq..r, l4) → K (tq..r, l4)
where l1 = host, l2 = router of victim network, l4 = mail server and i<j<k<m<n<p<q<r

7.2 Task 2 – Discover characteristics of cyber signal and noise (attack data and
normal data) at each observable point.

Symantec discovered characteristics of cyber signal and noise in the virus/worm domain
for the Sobig e-mail virus at the following observable points:

• the attacker machine’s performance variable monitor
• the victim machine’s performance variable monitor
• the bystander machine’s performance variable monitor
• the mailserver machine’s performance variable monitor

The characteristics of cyber signal and noise that we discovered for the Sobig e-mail
virus include the following:

There is a baseline of pairwise Pearson correlation between variables, even when there is
no user activity, as demonstrated by the pre-attack phase on each machine during every
experiment. The non-zero, non-invaried performance variables are likely caused by operating
system and services’ process activity. The pairwise correlation amongst those performance
variables is likely because some or all the variables for each performance object are pairwise
correlated independent of the activity on the machine. This baseline activity and correlation is a
form of cyber noise with respect to the performance variable observable point.

In the experiment with only attack activity, on all four machines the percentage of
pairwise correlated variables decreases from the pre-attack to the attack phase as attack-related
activity occurs. This is most surprising on the bystander machine, which should be relatively
unaffected by the attack activity. Nevertheless, this indicates that cyber signal creates a drop in
pairwise correlation among performance variables for the Sobig e-mail virus experiment.

Going from the attack to the post-attack phase in the experiment with only attack activity,
on the attacker and mail server machines there is a slight increase in pairwise correlation
percentage, and on the victim machines there is a slight decrease. The attacker and mail server
machines will have more attack activity than the bystander and victim machines again indicating
that stronger cyber signal has an effect on the percentage of pairwise correlation among
performance variables in the case of the Sobig e-mail virus.

In the experiments with attack and normal data (FTP and text editing user activity), the
percentage of pairwise correlated variables on the victim machine is lower during the attack
phase (with user activity continuing concurrently) than in the pre-attack with user activity phase.
These results are similar to the results on the victim machine in the experiment with only attack
data. The characteristic of cyber signal that is confirmed is that attack activity lowers the
percentage of correlated performance variables, for variables that are non-zero and non-invaried
within any given phase, in the case of the Sobig e-mail virus. (The results when using the same
set of non-zero, non-invaried variables across all phases are different in the text editing
experiment.)

In the text editing experiment, the post-attack phase has the smallest correlation
percentage of any of the five phases on the victim machine. For the FTP experiment, it has the
least number of significant correlations. The distinction between “smallest correlation

 139

percentage” and “least number of significant correlations” is that “correlation percentage” is the
“number of significant correlations” divided by the total cells (the number of comparisons
possible between non-zero, non-invaried variables). The “number of significant correlations” is
determined by the Pearson correlation analysis. The “total cells” is determined in a pre-analysis
stage when performance variables that are all zeroes or all the same value are thrown out, leaving
only the non-zero, non-invaried variables for Pearson correlation pairwise comparisons.
Therefore, the “correlation percentage” divides the “number of significant correlations” by the
“total cells” to calculate a percentage, versus simply looking at the raw number of significant
correlations.

• With the start of user activity in the text editing experiment, there is a decrease in the
correlation percentage from the pre-attack stage on the victim machine. In the FTP
experiment though, there is a slight increase in correlation percentage when user
activity starts. This is likely caused by the difference in activity type and its effect on
performance variables – highly network-intensive user activity appears to be more
correlated.

• The post-attack with user activity phase on the victim machine in the FTP experiment
exhibits a similar correlation percentage to the pre-attack with user activity phase,
after dipping during the attack phase. This seems to demonstrate again that the form
of cyber noise generated by network-intensive user activity is relatively high when
compared to other phases of the experiment, and it is unaffected by the aftereffects of
the Sobig e-mail virus.

• On the victim machine, across all three experiments (only attack activity, attack and
text editing user activity, attack and FTP user activity), the number of non-zero, non-
invaried variables common to both local and remote data collection methods is
highest during the attack phase. This also holds true on both the attacker and mail
server machines in the experiment with only attack activity. This is an important
characteristic of cyber signal for this worm: attack activity consistently increases the
number of non-zero, non-invaried performance variables for the Sobig e-mail virus.
In other words, attack activity increases the number of relevant performance
variables, which are those that are non-zero and non-invaried, both with and without
normal activity, and on all machines involved in the attack (i.e., all except the
bystander).

As mentioned previously, for the virus/worm attacks we utilize ASU’s experimental
process and analysis code for discovering characteristics of cyber signal and noise. Symantec
applied a subset of the analyses to performance variable data from all four machines in our Sobig
experiments. We provide an overview of experimental process and analysis code, and how they
map to the Sobig attack and our laboratory environment, for more details please refer to the ASU
technical reports.

The next subsection describes the experimental process Symantec utilized for discovering
characteristics of cyber signal and noise. Following that, we present the results from
experimentation with (only) attack data, and then from experimentation with both attack and
normal data.

 140

7.2.1 Experimental Process

For each of the observable points (machines), analysis code from ASU’s cyber signal
detection approach was run against the data to discover characteristics of cyber signal and noise.

The performance variable monitor on Microsoft Windows machines collects detailed,
low-level information regarding the performance of hardware and operating system components
(called objects within the performance monitor). The performance variable monitor can be
accessed on Windows XP through the Start Menu: Programs → Administrative Tools →
Performance. Example performance objects include the processor, memory, hard disk, network
interface, process scheduler, and threads, and for each object there are many variables. On a
typical machine, there can be between 3,500 and 4,000 variables spread across approximately 30
objects. For a machine configured as a mail server, there are approximately 5,000 performance
variables.

One important component of the experimental process is that each experiment was run
twice, using a different method of collection for the performance variables. The first method of
collecting the performance variables occurred on each experimental machine itself. This method
is called local data collection. The second method of collecting the performance variables
occurred on a remote machine by transmitting them over the network. This method is called
remote data collection. Using these two methods enabled us to factor out some of the effects of
the data collection process on the experiment, as the sheer volume of data collection undoubtedly
has an impact on the observed machine. We present the results of both the local and remote data
collection experiments in each subsection below.

The first set of analyses screens for variables with all zeroes and variables with all of the
same values. Screening those variables out leaves remaining only the non-zero, non-invaried
variables – those variables that could be statistically significant for the experiment. After the
non-zero, non-invaried variables are determined for each machine during each phase of the
experiment, we calculate the common significant variables between the local and remote phases.
This helps to remove some of the effect of the data collection method: any variable that is
statistically significant only in one of the two data collection methods – local or remote – is
likely demonstrating some artifact of the data collection. We present the results of this first set
of analyses because there are a great number of variables that are screened out in this first stage,
and that number varies greatly by observable point (machine) and by phase of the experiment.

The second analysis provided by ASU is Pearson correlation. Pearson correlation is a
measure of correlation between two variables. In the tables presenting our experimental results,
the total number of pairwise comparisons (called Total Cells) is a function of the number of non-
zero, non-invaried variables – each variable is compared against every other one. We utilize
only the common non-zero, non-invaried variables between the local and remote data collection
methods for each machine during each phase of the experiment when calculating the Pearson
correlation. We then present the results for the number and percentage of correlated variables
(for both data collection methods).

 141

7.2.2 Experimentation with Attack Data

For experimentation with only attack data, ASU divided each experiment into three

phases: pre-attack (10 minutes), attack (approximately 3 minutes for Sobig), and post-attack (10
minutes). The pre-attack phase was a period of inactivity to establish a baseline of performance
variable data for the experiment. The attack phase encompassed the amount of time from when
the attack was launched to when it was completed and/or terminated. In the case of Sobig, this
phase starts when the virus is run on the attacker machine; the infected attacker machine then
sends e-mail to the victim machine, where it is received, opened, and executed; the attack phase
is terminated by killing the virus process on both the attacker and victim machines. The post-
attack phase collects data on any aftereffects of the attack, with no activity taking place.

Table 74 presents the number of non-zero, non-invaried performance log variables on the
attacker machine. The measures are derived from performance variables that are installed by
default on commonly deployed operating systems (i.e., Windows 2000 and XP), as described
previously in this report. The purpose of this investigation was exploration of possible solution
strategies.

Table 74. Non-zero, non-invaried performance log variables on the attacker machine

Phase Local Remote Common
Pre-attack 849 693 576
Attack 850 801 683
Post-attack 899 802 660

Table 75 presents the number of non-zero, non-invaried performance log variables on the

bystander machine.

Table 75. Non-zero, non-invaried performance log variables on the bystander machine

Phase Local Remote Common
Pre-attack 911 674 617
Attack 599 624 464
Post-attack 733 675 582

Table 76 presents the number of non-zero, non-invaried performance log variables on the

mail server machine.

Table 76. Non-zero, non-invaried performance log variables on the mail server machine

Phase Local Remote Common
Pre-attack 1031 963 807
Attack 988 1004 876
Post-attack 916 858 748

 142

Table 77 presents the number of non-zero, non-invaried performance log variables on the
victim machine.

Table 77. Non-zero, non-invaried performance log variables on the victim machine

Phase Local Remote Common
Pre-attack 827 554 404
Attack 710 722 574
Post-attack 665 529 407

The non-zero, non-invaried screening results above show a substantial reduction in the

number of significant performance variables at all four observable points (machines) during all
phases of the experiment. (Recall that 3500 to 5000 performance variables are collected for each
experiment.) In general, the number of significant variables is higher during local data collection
than remote data collection for each machine during the pre-attack and post-attack phases, while
the opposite is true for the attack phase. Furthermore, the number of common significant
variables is highest in the attack phase for all but the bystander machine. (It is interesting that
the bystander machine – which should be relatively unaffected by the attack activity – shows
wide variations between phases: especially the large drop in significant variables during the
attack phase in local data collection mode.)

Table 78 presents a summary of the results from the Pearson correlation analyses on the
attacker machine.

Table 78. Summary results from the Pearson correlation analyses on the attacker machine

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 165025 103433 62.68%
Pre-attack (remote) 165025 105353 63.84%
Attack (local) 232221 118963 51.23%
Attack (remote) 232221 132628 57.11%
Post-attack (local) 216811 115598 53.32%
Post-attack (remote) 216811 131359 60.59%

Table 79 presents a summary of the results from the Pearson correlation analyses on the

bystander machine.

 143

Table 79. Summary results from the Pearson correlation analyses on the bystander
machine

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 189420 122899 64.88%
Pre-attack (remote) 189420 117483 62.02%
Attack (local) 106953 52839 49.40%
Attack (remote) 106953 61919 57.89%
Post-attack (local) 168490 88053 52.26%
Post-attack (remote) 168490 80718 47.91%

Table 80 presents a summary of the results from the Pearson correlation analyses on the

mail server machine.

Table 80. Summary results from the Pearson correlation analyses on the mail server
machine

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 324415 202256 62.34%
Pre-attack (remote) 324415 178985 55.17%
Attack (local) 382375 175916 46.01%
Attack (remote) 382375 186074 48.66%
Post-attack (local) 278631 131642 47.25%
Post-attack (remote) 278631 144224 51.76%

Table 81 presents a summary of the results from the Pearson correlation analyses on the

victim machine.

Table 81. Summary results from the Pearson correlation analyses on the victim machine

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 81003 44479 54.91%
Pre-attack (remote) 81003 44850 55.37%
Attack (local) 163878 77639 47.38%
Attack (remote) 163878 80242 48.96%
Post-attack (local) 82215 32640 39.70%
Post-attack (remote) 82215 37949 46.16%

Figure 53 depicts the correlation percentages across all four machines for both local and

remote data collection modes.

 144

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

pre-attack attack post-attack

Attacker (local)
Attacker (remote)
Bystander (local)
Bystander (remote)
Mailserver (local)
Mailserver (remote)
Victim (local)
Victim (remote)

Figure 53. Correlation percentages across four machines

In the Pearson correlation results above, with very few exceptions, the difference in

correlation percentage between the local and remote data collection methods is within a few
percentage points. This is at most an eight percent differential (bystander machine, attack
phase). Given the relative proximity in correlation percentages between the two data collection
modes, we will speak generally about each phase of the experiment independent of data
collection mode.

The Pearson correlation results above demonstrate the following characteristics of cyber
signal:

• On all four machines, the percentage of pairwise correlated variables decreases from
the pre-attack to the attack phase as attack-related activity occurs. Again, this is most
surprising on the bystander machine, which should be relatively unaffected by the
attack activity. Nevertheless, this indicates that cyber signal creates a drop in
pairwise correlation among performance variables for the Sobig e-mail virus
experiment. The average drop across all four machines is 9.32%. For this reason,
given the differences between local and remote data collection mentioned above, the
next subsection “Experimentation with Attack and Normal Data” focuses on variables
common to both local and remote methods as non-zero and non-invaried.

• Going from the attack to the post-attack phase, on the attacker and mail server
machines there is a slight increase (average 2.48% rise) in pairwise correlation
percentage. On the victim machine there is a slight decrease (average 5.24% drop).

 145

The attacker and mail server machines will have more attack activity than the
bystander and victim machines again indicating that stronger cyber signal has an
effect on the percentage of pairwise correlation among performance variables in the
case of the Sobig e-mail virus. As mentioned previously, given the differences
between local and remote data collection mentioned above, the next subsection
“Experimentation with Attack and Normal Data” focuses on variables common to
both local and remote methods as non-zero and non-invaried.

The Pearson correlation results demonstrate the following characteristics of cyber noise:
• There is a baseline of pairwise correlation between variables, even when there is no

user or attack activity, as demonstrated by the pre-attack phase on each machine. The
non-zero, non-invaried performance variables are likely caused by operating system
and services’ process activity. The pairwise correlation amongst the performance
variables is likely because some or all the variables for each performance object are
pairwise correlated independent of the activity on the machine. This baseline activity
and correlation is a form of cyber noise with respect to the performance variable
observable point.

7.2.3 Experimentation with Attack and Normal Data

For experimentation with both attack and normal data, ASU divided each experiment into

five phases: pre-attack (10 minutes), pre-attack with user activity (10 minutes), attack
(approximately 3 minutes for Sobig), post-attack with user activity (10 minutes), and post-attack
(10 minutes). The pre-attack phase and post-attack phases were the same as in the experiments
with only attack data: no activities were taking place on the machines at the beginning and end of
the experiment, respectively. During the pre-attack with user activity phase, some form of
normal data was generated via user activity, prior to the attack phase. The attack phase was
performed in the same manner as in the experiments with only attack data, except that the user
activity was continued throughout the attack phase in these experiments. Finally, in the post-
attack with user activity phase, the attack was terminated but user activities continued.

Symantec completed experiments with two different types of user activity, which
correspond to two of the user activity experiments that ASU performed:

• Text editing: a user types text, with figures and tables, into a Word document, saving
periodically. The same text that ASU used in their experimentation is used in our
experiments. This experiment represents a primarily host-based activity.

• FTP downloading: a user downloads files from an FTP server continuously. ASU
utilized e-book files for downloading; the files on our FTP server were a variety of
text and binary files of varying sizes. This experiment represents a primarily
network-based activity.

Similar to ASU in their experimentation, user activity is only conducted on a single
machine – the victim – for our Sobig experiments. For this reason, only data from the victim
machine is analyzed for characteristics of cyber signal and noise in the following subsections.

 146

7.2.3.1 User Activity: Text Editing

Table 82 presents the number of non-zero, non-invaried performance log variables on the

victim machine.

Table 82. Non-zero, non-invaried performance log variables on the victim machine

Phase Local Remote Common
Pre-attack 715 635 356
Pre-attack w/ user activity 818 696 489
Attack 867 738 529
Post-attack w/ user activity 725 636 416
Post-attack 804 564 409

As in the experiments with only attack data, the number of non-zero, non-invaried

variables during each phase of the experiment on the victim machine is higher during local data
collection than remote data collection. The number of non-zero, non-invaried variables rises
from the pre-attack phase to the pre-attack with user activity and again to the attack phase, then
falls in the post-attack with user activity phase and falls again in the post-attack phase. This
indicates that as more activity occurs on the victim machine – whether that activity is normal
usage or attack activity – the number of significant performance variables increases. This
corresponds roughly to the pattern in the experiment with only attack data (with only three
phases of the experiment though).

Table 83 presents a summary of the results from the Pearson correlation analyses on the
victim machine for the text editing experiment.

 147

Table 83. Pearson correlation analyses on the victim machine for the text editing

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 62835 30061 47.84%
Pre-attack (remote) 62835 29469 46.90%
Pre-attack w/ user activity (local) 118828 47720 40.16%
Pre-attack w/ user activity (remote) 118828 50787 42.74%
Attack (local) 139128 59458 42.74%
Attack (remote) 139128 57265 41.16%
Post-attack w/ user activity (local) 85905 29422 34.25%
Post-attack w/ user activity (remote) 85905 38369 44.66%
Post-attack (local) 83028 32936 39.67%
Post-attack (remote) 83028 29533 35.57%

Figure 54 depicts the correlation percentage for both local and remote data collection

modes.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

pre-attack pre-attack
with user

activity

 attack post-attack
with user

activity

 post-attack

Victim (local)

Victim (remote)

Figure 54. Correlation percentage for both local and remote data collection modes

 148

After screening only the common significant variables and then calculating the Pearson
correlation percentages, the difference between local and remote data collection is within a few
percentage points (with the exception of the post-attack with user activity phase).

One other interesting and potentially useful view of the data is to study the changes in
correlation percentages when the same performance variables are examined across all phases of
the experiment. In order to study this scenario, we screened the data from all phases of the
experiment in both local and remote data collection modes for only the variables that were
always non-zero and non-invaried. For the text editing experiment on the victim machine, this
was 252 variables, yielding 31,375 correlation pairs. The Figure 55 below depicts the correlation
percentages in both local and remote data collection modes using only the common non-zero,
non-invaried variables.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

pre-attack pre-attack
with user

activity

 attack post-attack
with user

activity

 post-attack

Victim (local)

Victim (remote)

Figure 55. Correlation percentages using only common non-zero, non-invaried variables

Our observations regarding the characteristics of cyber signal and noise will be presented

after the next subsection, independent of the differences in local and remote data collection
results.

 149

7.2.3.2 User Activity: FTP Downloading

The Table 84 below presents the number of non-zero, non-invaried performance log

variables on the victim machine.

Table 84. Non-zero, non-invaried performance log variables on the victim machine

Phase Local Remote Common
Pre-attack 695 808 395
Pre-attack w/ user activity 694 992 507
Attack 708 944 557
Post-attack w/ user activity 706 893 506
Post-attack 434 702 316

In this experiment, the number of non-zero, non-invaried variables during each phase of

the experiment on the victim machine is higher during remote data collection than local data
collection – this is in contrast to previous experiments. This could be a result of the highly
network-intensive user activity. As in the text editing experiment, the number of non-zero, non-
invaried variables rises from the pre-attack phase to the pre-attack with user activity and again to
the attack phase, then falls in the post-attack with user activity phase and falls again in the post-
attack phase. This pattern of common variables across experiment phases is a consistent
observation across all experiments on the victim machine.

The Table 85 below presents a summary of the results from the Pearson correlation
analyses on the victim machine for the FTP downloading experiment.

Table 85. Pearson correlation analyses on the victim machine for FTP downloading

Phase Total
Cells

Significant
Correlations

Correlation
Percentage

Pre-attack (local) 77421 32136 41.51%
Pre-attack (remote) 77421 34407 44.44%
Pre-attack w/ user activity (local) 127765 58907 46.11%
Pre-attack w/ user activity (remote) 127765 61481 48.12%
Attack (local) 154290 54743 35.48%
Attack (remote) 154290 59629 38.65%
Post-attack w/ user activity (local) 127260 57904 45.50%
Post-attack w/ user activity (remote) 127260 60767 47.75%
Post-attack (local) 49455 13562 27.42%
Post-attack (remote) 49455 20200 40.85%

 150

Figure 56 depicts the correlation percentage for both local and remote data collection
modes.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

pre-attack pre-attack
with user

activity

 attack post-attack
with user

activity

 post-attack

Victim (local)

Victim (remote)

Figure 56. Correlation percentage for both local and remote data collection modes

Again, after screening only the common significant variables and then calculating the

Pearson correlation percentages, the difference between local and remote data collection is
within a few percentage points (with the exception of the post-attack phase this time).

For the FTP experiment, we also studied the changes in correlation percentages when the
same performance variables are examined across all phases of the experiment. As we did for the
text editing experiment, we screened the data from all phases of the experiment in both local and
remote data collection modes for only the variables that were always non-zero and non-invaried.
For the FTP experiment on the victim machine, this was 226 variables, yielding 25,200
correlation pairs. Figure 57 depicts the correlation percentages in both local and remote data
collection modes using only the common non-zero, non-invaried variables.

 151

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

pre-attack pre-attack
with user

activity

 attack post-attack
with user

activity

 post-attack

Victim (local)

Victim (remote)

Figure 57. Correlation percentages using only the common non-zero, non-invaried
variables

Our observations regarding the characteristics of cyber signal and noise will be presented

in the next subsection, independent of the differences in local and remote data collection results.

7.2.3.3 Characteristics of Cyber Signal and Noise from Experimentation with Attack and Normal
Data

The Pearson correlation results on a victim machine with normal and attack activity

demonstrate the following characteristics of cyber signal:
• The percentage of pairwise correlated variables is lowest during the attack phase

(with user activity continuing concurrently) in the FTP experiment. In the text editing
experiment, the attack phase has a lower correlation percentage than in the pre-attack
phase. These results are similar to the results on the victim machine in the
experiment with only attack data. The characteristic of cyber signal that is confirmed
is that attack activity lowers the percentage of correlated performance variables in the
case of the Sobig e-mail virus, for variables that are non-zero and non-invaried within
any given phase. However, if we are to use a set of variables to detect phase
transitions, then the results depicted graphically on page 151 must be taken into

 152

consideration. Once these results are taken into consideration, then the most
important characteristic of cyber signal that is confirmed is that the attack phase
increases the number of non-zero, non-invaried variables.

• In the text editing experiment, the post-attack phase has the smallest correlation
percentage of any of the five phases. For the FTP experiment, it has the least number
of significant correlations.

• In the FTP experiment, when we examine only the common non-zero, non-invaried
variables across all phases for pairwise correlation, the correlation percentage results
mirror the results of using different variables for each phase. The correlation
percentages were calculated with comparisons between two sets of variables: (1) all
of the non-zero, non-invaried variables in each given phase – even though the set of
non-zero, non-invaried variables differed between phases – and (2) only the common
non-zero, non-invaried variables that had non-zero, non-invaried behavior in every
phase. In the experiment with FTP user activity, these correlation percentages for the
two sets of variables roughly corresponded to each other. This is useful because in
practice one will not know which “phase” of an attack is currently occurring,
therefore the results using only the common non-zero non-invaried variables for
comparison are potentially useful. This is an encouraging result, in that correlation
percentage could be a meaningful indicator of attack phase for the Sobig attack with
FTP user activity. To find indications of virus/worm activity with no a priori
signature for this virus is an encouraging result, even if experimentation begins in
simplistic contexts. However, results for the text editing experiment were different.

The Pearson correlation results on a victim machine with normal and attack activity
demonstrate the following characteristics of cyber noise:

• As in the experiments with no user activity, there is a baseline of pairwise correlation
between variables, even when there is no user or attack activity, as demonstrated by
the pre-attack phase on each machine. This is a form of cyber noise with respect to
the performance variable observable point.

• With the start of user activity, in the text editing experiment there is a decrease in the
correlation percentage from the pre-attack stage. In the FTP experiment though, there
is a slight increase in correlation percentage when user activity starts. This is likely
caused by the difference in activity type and its effect on performance variables –
highly network-intensive user activity appears to be more correlated.

• The post-attack with user activity phase in the FTP experiment exhibits a similar
correlation percentage to the pre-attack with user activity phase, after dipping during
the attack phase. This seems to demonstrate again that the form of cyber noise
generated by network-intensive user activity is relatively high when compared to
other phases of the experiment, and the cyber noise is unaffected by the after effects
of the Sobig e-mail virus.

• The post-attack with user activity phase in the text editing experiment has the biggest
difference in correlation percentage between the local and remote data collection
modes, but when averaged it is slightly lower than the correlation percentage from the
pre-attack with user activity phase. Both phases have a lower correlation percentage

 153

than the pre-attack phase (with no user or attack activity), indicating that the cyber
noise generated by text-editing user activity seems to lower the percentage of
correlated performance variables.

7.3 Task 3 – Investigate, develop and test sensor models of signal detection, and
a sensor fusion model for each observable point.

Symantec investigated, developed, and tested sensor models and a sensor fusion model

for the database domain using the query time series. The query time series is observable at the
database, at the client machine, and on the network in between. In this manner, the query time
series is consistent in our experiments at each observable point, and the sensor and sensor fusion
models for any one of these observable points then are sensor and sensor fusion models for each
of the other observable points in our experiment.

The sensor models are stochastic models created by processing the query time series,
either adaptively in real-time or during a training period, characterizing the behavior of either
one user or a group of users during a client session. A sequence of queries is modeled as a
sequence of “states”; the behavioral model is then a “finite state model” utilizing n-grams.

The sensor fusion models utilize Bayesian networks, in which a probability of attack is
calculated from sensor data and prior probabilities.

Testing of the sensors and sensor fusion models occurred via experimentation with
database simulations covering a wide range of representative normal usage and attacks. In total,
eleven usage and attack scenarios were tested to evaluate the feasibility and correctness of the
approach.

The first subsection presents the sensor model developed for the database investigation.
The second subsection describes the sensor fusion models investigated and developed. The third
subsection presents the testing conducted using simulated database scenarios.

7.3.1 Sensor Model

The key observable point in the database investigation is the processing component of a

database for the query time series. The query time series is the sequence of database queries
submitted for processing. Because the data collected in the database’s query time series is
textual (raw SQL query text), it must undergo significant transformations to enable attack
detection.

The approach taken in the database investigation was to factor this transformation into
several steps, including development of both sensors and a sensor fusion model. The first of
these steps is the derivation of both categorical and arithmetic variables from the query time
series text and other information. This derivation is done by processing components that “sense”
certain features of the data; in accordance with the signal detection approach, these processing
components are called “sensors”. The choice of sensors is driven by hypotheses developed by
investigating and simulating attack scenarios.

The sensors are, in effect, mathematical functions. These functions range from simple
functions of single queries to history-dependent functions of the query time series and related
query information (such as user name, session ID, IP address, time, etc.).

 154

Relatively simple computations include:
• Query text, with literals, table references, and column references replaced by

variables
• Query complexity according to several measures
• Count of number of certain constructs (SELECT, WHERE, JOIN, *, etc.) in query
• Tables/columns referenced by queries
• Sets of bindings for variables, or literals, included in queries
• Measure of aggregation of query content from query to query and measure of breadth

of content exploration, observed in sequential dependencies between queries (for a
given user or session)

• Inclusion of certain relational operators in queries
• Membership in equivalence classes created by clustering sets of tables, columns, or

literal values
• Metrics of breadth of tables and columns accessed and breadth of query constructs

employed
More sophisticated computations involve history dependencies. In effect, these

computations compute the deviation of query sequences from empirically established norms –
deviations with respect to specific characteristics such as those above. The established norms are
represented by stochastic models that may be created adaptively in real-time or during a training
period.

A discussion of the differences between this investigation and traditional anomaly
detection is provided at the end of this section – in particular, our detection approach takes into
account both specific attack scenarios as well as deviations from normal behavior, and additional
information that supports an attack hypothesis is required and utilized to detect insider attacks.
Existing anomaly detection was an appropriate starting point for signal/noise separation analysis
in the case of insider attacks against databases, because insider attacks cannot typically be
classified a priori as malicious, requiring the integration of adaptive methods to learn legitimate
behavior (noise) with attack-specific hypotheses characterizing malicious behavior (signal).

These models characterize the behavior of either one user or a group of users during a
client session. A sequence of queries is modeled as a sequence of “states” (equivalence classes
of queries). These states are equivalence classes of queries where the equivalence classes are
created from the query text by replacing literals, table references, and column references with
variables. The behavioral model is then a “finite state model” – specifically, an n-gram model
capturing:

• Probabilities of transitions between states, given the n-1 most recent states
• delays (in time), and variances of delays, between queries (i.e., given a prior sequence

of states, the FSM yields the expected value for the delay until the next query, as well
as the variance of that delay)

• proportion of visits to each state (separate from transition information)
• relationships between IP and user, as well as IP and query categorization
Other history-dependent quantities are computed separately, such as:
• the length of sessions, measured in time or as a number of queries
• the number of concurrent sessions for a given DB user

 155

With each of these computed as implied above, deviation from historical norms is easily
detected for many of them. These signal detection models are similar to those utilized in standard
anomaly detection, however:

• The deviations are computed for very specific quantities that have been chosen by
considering specific attack scenarios, not just normal behavior.

• The computed result is not only a metric of the magnitude of the deviation, but may
include other “directional” information; for example, if a sequence of queries occurs
at an unusual rate, or with unusual regularity, the directionality of the difference (for
both rate and regularity) is recorded – only certain types of changes (e.g.,
corresponding to a transition from human analysis to automated data collection)
correspond to attacks.

• The computed deviation is typically not sufficient, independently, to identify an
insider attack. Additional information that specifically supports an attack hypothesis
(captured by other variables) is typically required.

Testing of these sensor models is described later in this section.

7.3.2 Sensor Fusion Model

Experimentation with the various transformations above, as well as the study of attack

scenarios, strongly suggested that fusion of information was critical to creating reliable
indications and warnings.

Symantec first investigated several methods of sensor fusion, including the following:
• Naïve Bayesian Inference: A collection of variables are modeled with large joint

probability distribution. The advantages of this fusion model are that it is well
grounded and conceptually simple. However, it is very difficult to compute and
manipulate for a variety of reasons (for example, conditional independence is not
assumed).

• Bayesian Networks [36]: Specific assumptions of conditional independence are
made, leading to a directed graph with nodes representing random variables and
edges representing conditional probabilities. Bayesian networks are also well
grounded and conceptually simple, and there are optimized implementations
available. The requisite assumptions of conditional independence are a disadvantage.

• Dempster-Shafer Evidence Theory [37,38]: In some formulations, this is a
generalization of Bayesian formalism to handle uncertainty, typically rule-based or
using something like random variables. This method does not necessarily require
conditional independence. Unfortunately, in practice it is conceptually difficult,
computationally cumbersome, and difficult to apply correctly.

• Certainty Factors [39]: This is a rule-based formalism, where individual rules have
associated uncertainty. This fusion model is simple to understand and implement, but
again it requires a conditional independence that is difficult to achieve. In addition,
the decision theory is ad hoc.

 156

• Weighted Average / Voting / Neuron: A weighted average of variables is computed
and compared against a threshold. This model is also simple to understand and
implement, but it is not well grounded and loses information about probabilities.

Of these approaches, the Bayesian network fusion model was chosen and implemented.

After weighing the advantages and disadvantages of each method, Bayesian networks was
determined to be the most amenable to the sensor fusion of database query time series sensor
values. Our approach utilizes a Bayesian network model and then infers a probability of attack
from various evidence and prior probabilities. Both the inferred variable (in this case probability
of attack) and the choice of evidence are configurable. Figure 58 shows an example Bayesian
network fusion model derived from experimentation with the scenarios described later in this
section.

Figure 58. An example Bayesian network fusion model

 157

Testing of this sensor fusion model is described in the next subsection.

7.3.3 Testing of Sensor and Sensor Fusion Models

Testing of both the sensor and sensor fusion models was conducted via experimentation

with simulated database scenarios, involving both normal user activity and attack activity.
Symantec devised eleven database scenarios across three representative database styles for
testing purposes. Testing was conducted primarily to evaluate the feasibility of the approach and
the correctness of the implemented sensor and sensor fusion models. An overview of the
experimentation conducted for testing will be provided in this subsection.

The database scenarios are classified by the database style that they explore. Modern
database management systems have numerous features, only some of which may be relevant to a
given database installation. Often the particular features used, and the way they are used, fits a
well-known pattern or “database style”. The database scenarios investigated for testing
considers three database styles:

• Online transaction processing (OLTP)
• Data warehouse
• General purpose (e.g., Web-Note: Some of the scenarios investigated may be

more relevant to the IC environment than others; for example, we believe that
the data warehouse scenarios would have more relevance than the OLTP
scenarios.)

Online transaction processing databases are typically utilized for commerce, inventory,
supply chain management, etc. Queries are often issued via stored procedures and are highly
stereotyped. Individual queries typically involve small data sets and the rate of queries is very
high. Transactions often involve both reading and writing.

Data warehouse databases are typically utilized for decision support, marketing research,
analysis, etc. The data is often “not-quite-real-time”, but there can be very large data
dictionaries, with many relations. Usage of the database involves variable query patterns,
including possibly ad hoc queries. Data processed in individual queries may be large.

General-purpose databases are utilized for Web servers and e-commerce. There are
multiple classes of users, some sharing a single user identity and others with higher privileges
(e.g., to perform administrative operations). The database may sit behind an application server
or web server and may support a heterogeneous set of applications. In practice, the features
include a mixture from both OLTP and data warehouse databases.

Scenarios are presented by database style. Each database style has its own “story” that
provides a means of discussing scenarios. The story is included for pedagogical and
motivational reasons, but it is the implementation that determines the breadth of applicability of
the scenario. For each database style, an introduction to that style is provided, followed by a
listing of the individual scenarios for that database style.

 158

7.3.3.1 OLTP Scenarios

The OLTP scenarios are described with respect to a database of simulated credit card

information, including tables of basic account information, payment history, transaction history
for a set of cardholders, and case histories of customer service. The simulated database user is a
customer service representative (CSR) operating in a highly constrained mode.

Under normal circumstances, the user has no privileges on the data itself, only privileges
to execute a particular set of stored procedures, each representing a transaction for part of his/her
job function. The stored procedures carry the privileges on the data, and the user’s normal
functions are carried out through forms-based applications that call the stored procedures. The
sensitive data is the basic account information, which includes the cardholder’s authentication
data as well as the credit card numbers. Attacks are aimed at theft of sensitive data, using the
stored procedures available to the user.

Normal activity is organized around customer calls handled by CSRs. Handling a
customer call entails performing a sequence of transactions from an allowed set, all carrying the
same card number. The malicious CSR interleaves either reconnaissance or data collection
activities with his/her normal activities.

The OLTP scenarios are:
OLTP1: CSR retrieves credit card information (manually) without a corresponding

customer call
OLTP2: Upon a customer call, the CSR deviates from usual script to retrieve

private information about another customer
OLTP3: CSR performs manual reconnaissance
OLTP4: CSR performs automated data collection

7.3.3.2 Data Warehouse Scenarios

The important characteristics of the data warehouse scenarios are:
• the universe of queries is not bounded in normal use
• a single analyst may produce new queries with different structure, accessing different

tables, joining them different ways, every day
• a single analyst may execute queries repetitively or only once
• in general, established anomaly detection techniques are less applicable to attack

scenarios for this database style
Unlike the OLTP case, where queries and query sequences are highly stereotyped, in the

case of the data warehouse, for almost any behavior, there is some database installation for
which that behavior is legitimate. It is much more difficult to attach significance, a priori, to
individual behaviors. In this case, more sophisticated classification schemes must be employed
and deviations from normal behavior can be expected to be more subtle. The opportunity arises
because, for a given installation or user, only some behaviors will typically be “normal”, and the
scenarios seem to suggest that certain kinds of deviations from that “normal” will be particularly
suggestive of an attack or its precursors.

 159

Two kinds of data warehouse installations are considered:
• A commercial data warehouse used for decision support and marketing analysis. The

simulated user is a marketing analyst with broad query privileges.
• A highly secure data warehouse at an intelligence agency, used for analysis of

intelligence data. The simulated user is an intelligence analyst with broad query
privileges, limited by need-to-know restrictions to particular subject areas.

The specific scenarios are believed to apply, to some extent, to both kinds of data
warehouses. Scenarios have been constructed with different levels of access to reflect possible
differences in the amount of data available to a single user.

In each case, the malicious user is a highly trusted employee, with privileges sufficient
for the user to follow his/her instincts in making new connections between seemingly unrelated
data items. Users are able to issue ad-hoc complex queries.

Normal analyst activity, in both the marketing and intelligence data warehouse
installations, includes a mixture of repetitive and exploratory query sequences. The more
difficult problem involves the exploratory sequences. These may illustrate several typical
characteristics:

• complex queries may be built up in stages, as the user examines the intermediate
results and finds ways to filter and refine them by joining them with information in
other tables—the connections the user is trying to establish or refute may involve
multiple tables among which there are semantic relationships (usually via foreign
keys)

• graphs of relationships might be traced out by self joins on certain tables (e.g. on a
table of telephone call records, when A calls B and B has at some point called C,
there is a possible connection between A and C) — some sets of queries might be
issued several times with different parameters for what-if analyses — a higher
frequency of erroneous queries (than found in non-analyst activities)

The analysts have privileges to access database tables directly. They are more likely
(relative to the other classes of scenarios) to examine the database structure to formulate ad-hoc
queries linking several tables; thus, metadata queries have a significantly lower chance of
signaling the onset of an attack. There is a wider range of activities between highly focused
retrievals and systematic extraction of larger volumes of data.

The data warehouse scenarios are:
DW1: Attacker performs reconnaissance, manually exploring breadth of data
DW2: Collecting data, attacker does not form query by accreting terms in query
DW3: Attack involves transition from exploratory to repetitive data collection
DW4: Attack involves topic outside historical norm for user
DW5: Attack performed at time outside historical norm for user

7.3.3.3 General Purpose Scenarios

The general-purpose database (as might be found behind a Web server, portal, or

application server) supports some transaction processing as well as some analysis functions (for
users as well as administrators).

 160

Because of the complex functionality of Web servers, they often have significant
configuration vulnerabilities. When they are penetrated, the attacker often gains the same rights
to the database as the Web server itself. Thus, this is one case where misuse detection provides a
last line of defense against other types of attacks.

Normal usage comprises the Web-based transactions and some server administration.
Conceptually, this includes user login/logout, access to public and private areas, searches for and
display of content, financial transactions, and access of private content by an administrator.

We examine two attack scenarios. The first deals with the case where the Web server has
been taken over. In this case, the attacker uses the database user ID normally used by the Web
server and retrieves sensitive data. The second deals with the well-known but persistent problem
of SQL injection.

The general-purpose database scenarios are:
GP1: Inappropriate use of web server user privileges to access otherwise unavailable

data
GP2: SQL injection to get otherwise private data

7.3.3.4 Testing Results and Observations

Each of the eleven scenarios described above was implemented and tested using an

augmented and instrumented Oracle database infrastructure. In each scenario run, both normal
user activity and attack activity were simulated, and in each scenario the sensor models and
sensor fusion models were calculated over the query time series. In the majority of the scenarios,
the attack queries were detected after a training period, albeit with varying degrees of false
positive performance. For the remaining scenarios, further analysis is required to determine the
cause of missed detections (e.g., insufficient training, inadequate models, etc.). These initial
testing results demonstrated the feasibility of the approach (with simulated data) and
implementation; further investigation and evaluation is required to fully validate the utility of the
approach.

Experimentation with the Bayesian network approach to sensor fusion suggests that it is
viable; however, many of the conditional probabilities must be adjusted to get a desired
frequency of alerts and a relative weighting of evidence that reflects the certainty about the
relevance of the evidence – for some scenarios some evidence is much more useful than others.
For example, in some attack scenarios, the sensor for whether the data accessed by a query is
sensitive (called “is-sensitive-data”) is a very important indicator: in that case, for optimum
effect (to correctly identify the attacks) the correlation between “is-sensitive-data” and the attack
determination (“is-attack”) can be artificially increased relative to other variables that are
deemed less relevant. If not careful, this artificial increase can be exaggerated to a point not
accurately reflecting risks and sensitivity of aggregation.

 161

7.4 Task 4 – Formulate and solve an optimization problem to select an optimized
suite of I&W observables / cyber sensors.

Symantec formulated and solved an optimization problem to select an optimized suite of

I&W observables / cyber sensors.
The optimization problem minimized the “harm” in terms of whether or not to alert an

administrator of a potential attack. The I&W observable that comprised the optimized suite was
the database query time series. Experimentation with the database scenarios yielded some useful
cyber sensors for the optimized suite, such as a new state being added to the finite state machine,
irregularly timed queries, unusually complex queries, and unusual use of columns.

The first subsection presents the formulation of an optimization problem for I&W in the
database domain and the solution utilized for this investigation. The second subsection discusses
the optimized suite of I&W observables / cyber sensors.

7.4.1 Optimization Problem for I&W of Insider Database Attacks

In formulating the optimization problem for providing I&W of insider database attacks,

several components of an I&W system were considered. These include the database and its
users, human security administrators, and the I&W infrastructure itself.

7.4.1.1 The Database and Its Users

Database queries are associated, by the database, with database users (DB users). A

given DB user may issue queries on behalf of more than one human or organization, for
example, in circumstances where a single DB user account is shared between a web server and
the database. For the purposes of our research addressing insider attacks, it is assumed that each
query can be associated with a single DB user that is responsible for initiating it. The approach
presented here does not depend on the specifics of that DB user, but a required property of a DB
user is that it may be ascribed malicious intent or legitimate intent for each query that it initiates.

Several pieces of information are almost always observable for each query, including the
time of the query,
 =t time of the query,
as well as the query content itself (i.e., the SQL statement text), the DB user issuing the query,
the IP of the host that sent the query to the database, and other information,
 =q (query SQL, DB user, IP of host, ...).

Because each query can be identified with a DB user who can in turn be ascribed
malicious or legitimate intent, queries can be organized into “incidents”. For the purposes of this
discussion an incident can be defined:

• by defining “sub-incident” as a contiguous sequence of queries issued by a single DB
user with malicious intent; and

• by defining “incident” as a sub-incident that is not part of any other sub-incident.

 162

Thus, given a time series of queries, (q0, t0), ..., (qi, ti), the incidents can be numbered (1,
2, ...). Then, a given query, qi, can be associated with a given incident number (or, say, zero if
the query is not part of an incident), ai.

In practice, a query (or collection of queries) must meet two tests in order to be
determined to be part of an incident:

• the query (or collection of queries) is statistically anomalous, where
• the specific character of the anomaly is consistent with some prior “hypothesis” about

how an attack might take place.
While the domain-specific problem of defining an incident is important for a production

system – it may, for example, impact how evidence of an attack is aggregated and presented to
an administrator – the database investigation focused on the question of whether an individual
query was part of an incident.

7.4.1.2 Human Security Administrators

When an I&W system “detects” an incident, a human security administrator (HSA) will

typically be notified (perhaps in addition to other things occurring). In the case of insider
database attacks, this contributes a significant amount of complexity to the problem of
developing optimized I&W: the costs and benefits of notifying an administrator are difficult to
quantify.

The cost of notifying an administrator will depend on what is expected of him or her. At
the very least, some time is consumed validating the detection. How much time will depend on
what type of forensic information is provided. Since many possibilities may contribute to a
decision to notify the administrator – including mutually exclusive possibilities – there is a great
deal of variety in the type of information that presumably should be provided. For example, a
system might:

• identify a single query
• identify a DB user
• identify an incident
• identify several queries, DB users, or incidents
• merely indicate that “something is wrong somewhere”
Quantifying the cost is further complicated by the fact that the cost of a false positive

depends on what action the administrator takes (e.g., shutting down the database).
The benefits of notifying an administrator, aside from potentially preventing or mitigating

damage from an attack, include the possibility of training the I&W system. Since the
administrator has pattern recognition skills and “out-of-band” knowledge about the database
system and its users, the administrator will generally know things that the I&W system does not.
By doing a forensic investigation, the administrator can feed back information (e.g., “this was
not an attack”). Further, this information may, in principle, be very specialized (e.g., user, John
Doe, is supposed to be doing this).

The present research takes a very simple approach, assuming a fixed expected cost per
notification and some fixed expected loss should an attack occur and not be detected.

 163

7.4.1.3 I&W Infrastructure

As noted previously, a defining property of insider attacks is that the behavior that

constitutes the attack cannot be classified a priori (i.e., before any kind of training) as malicious.
This is very different from cases where attacks have some clear signature (e.g., network traffic
increased by orders of magnitude in a DOS attack). Given a query time series, the perceived
probability that an attack is underway will tend (in many situations) to be small even when an
attack is actually under way – i.e., in this situation, the specific choices made in detection and
analysis methodologies may more frequently impact the results.

Analysis of the scenarios considered in this research reveals that a significant amount of
uncertainty is inherent in detection of insider attacks and that a general approach must account
for such uncertainty.

Further, while determining whether an attack is underway is a challenge, determining
what to do about it also creates a challenge. Per the discussion above, there are many variables
in notifying a human security administrator. Further various actions may be automatically taken:

• block the query (and any transaction it is part of to satisfy integrity constraints)
• block all queries by the DB user
• shut down access to a table
• etc.
The present research considers a passive system in which an attack, or pending attack, is

detected and an HSA is notified, but no other action is taken. Even in this case, notification of an
HSA has a cost – the cost of the HSA’s attention for a period of time.

Yet further, initial research on database attack scenarios suggests that different types of
attacks may lend themselves to qualitatively different detection schemes. Thus, it is anticipated
that the I&W system will have multiple “hypothesis-specific” modules to explicitly deal with
these different schemes. Information from these different modules must be merged. This
necessitated a data fusion approach within the database-specific I&W infrastructure, even before
integrating with other I&W components.

Because of the importance of uncertainty in detecting insider attacks, it is useful to
consider a probabilistic formulation of the I&W problem.

As noted above, determination of the “maliciousness” of a query can only be made in
light of historical information (i.e., training, whether it be in a dedicated “training” session or
through observing a production system). Such historical information can be captured in
stochastic model.

Consider the time series discussed above,
 (q0, t0, a0), (q1, t1, a1), ..., (qj, tj, aj) ; tj > ti+1 > ti > t0
to be an outcome of the stochastic process,

X = {Xi : i ∈ N} = (Q, T, A) ; Xi = (Qi, Ti, Ai),
where Xi is a random variable with the sample space,
 “queries” × “time” × “incident number”.

The process X represents a model of the “real world”, including information about
whether various queries were parts of incidents. Then, of course, a simple determination of
whether to warn a human security administrator (HSA) might then depend on whether

 164

(Pa * h(“notified”, “attack”) + (1–Pa) * h(“notified”, “no attack”)) <
(Pa * h(“didn’t notify”, “attack”) + (1–Pa) * h(“didn’t notify”, “no attack”)),

where,
h(“whether notified”, “whether attack was real”) = “metric of harm”,

and Pa represents the perceived probability that an incident is an attack,
Pa = P (Ai > 0 | Q0 = q0, T0 = t0, ..., Qi = qi, Ti = ti).
Note that metric of “harm”, h, like the process, X, may reflect historical information (e.g.,

h may reflect the fact that it may be more expensive to notify an HSA more frequently than some
optimal rate).

In the present research, we used the following model where the harm Hi for each incident
i could have any of three possible values:

• h(“didn’t notify”, “no attack”) = 0,
• h(“notified”, “attack”) = c

= h(“notified”, “no-attack”) = “cost of notification” (or “cost-per-alert”), and
• h(“didn’t notify”, “attack”) = l = “prospective loss from attack” (or “prospective-

loss”).
As described above, we assume a fixed expected cost per notification even if there was

no attack, a fixed expected loss (assumed to be a greater harm) for attacks without notification,
and no harm (other than the cost of the alert) for attacks with notifications. The decision
function from above

(Pa * h(“notified”, “attack”) + (1–Pa) * h(“notified”, “no attack”)) <
(Pa * h(“didn’t notify”, “attack”) + (1–Pa) * h(“didn’t notify”, “no attack”)),

may then be simplified to read:
 [Pa * c + (1 - Pa)*c] < [Pa * l]
which reduces to:
 c < Pa* l
and further reduces to:
 Pa > c / l

In other words, the decision logic might be stated, “warn an HSA when the perceived
probability of an incident being an attack is greater than the cost of a false alarm divided by the
potential loss of a missed attack.”

In this optimization problem, the goal is minimization of total harm H as a sum of all
harms Hi for all incidents in a time series sequence of incidents:

H = ∑
=

j

i
iH

0

However, as noted above, the magnitude of each harm is a function of both ground truth
of whether or not there was actually an attack in progress, as well as the result of the decision
function as to whether or not an alert went to an HSA. For this reason, at this point it is
necessary to more formally represent ground truth. We represent ground truth (G) of each
incident as either actually being an attack (Gi=1) or actually not being an attack (Gi=0). Given
this representation of ground truth, and decision logic described above, the four cases of the truth
table may then be represented as:

 165

If Gi = 0 and [(c/l) – Pa] >= 0 then Hi = 0
If Gi = 0 and [(c/l) – Pa] < 0 then Hi = c
If Gi = 1 and [(c/l) – Pa] < 0 then Hi = c
If Gi = 1 and [(c/l) – Pa] >= 0 then Hi = l

This may be represented in closed form as

Hi = [c * [POS (Pa - (c / l)] * (Pa – (c / l))]
 + [l * Gi * POS ((c / l) – Pa)]

where POS (x) is a function such that:
 POS (x) = 1 for x > 0,
 POS (x) = 1 for x = 0, and
 POS (x) = 0 for x < 0.

Of the first term of the closed-form representation of Hi, the first component, namely
c * [POS (Pa - (c / l)],

captures the two cases where alerts are generated and the harm is equal to the costs of the alerts.
Of the first term of the closed-form representation of Hi, the second component, namely

(Pa - (c / l),
captures the boundary case where the perceived probability of an incident being an attack
precisely equals the cost of an alert divided by the loss of attacks without warning. In such
cases, in the decision logic above, an alert is not generated. In such cases, the harm is entirely a
function of ground truth Gi.

The second term of the closed from representation of Hi, namely
[l * Gi * POS ((c / l) – Pa)],

captures the case where an alert is not generated though an attack is imminent or occurring. In
such cases, the harm is the loss from an attack without warning.

Given then that c and l represent constants, most likely derived from historical or
projected costs and losses, and given that indications and warnings systems have no control over
ground truth Gi, indications and warnings systems then only have one means to minimize the
harm H of a time series sequence of incidents. That means is the means of adjusting the
accuracy of Pa in estimating the likelihood of an attack. The optimization problem then is
minimizing H by improving accuracy of Pa. To do this, we must more formally define the
accuracy of Pa. To do this, we revisit Hi:

Hi = [c * [POS (Pa - (c / l)] * (Pa – (c / l))]
 + [l * Gi * POS ((c / l) – Pa)]

We might simplify this by defining a condition w where the HSA is warned of a potential
attack. From the truth table we note that

Hi = [c * w] + [l * Gi * not (w)]
where not (x) is the boolean function “not.”

Without loss of precision, this may be rewritten as:

 166

Hi = [c * w * Gi] + [c * w * not (Gi)] + [l * Gi * not (w)]
And further re-written as:

Equation Z:
Hi = Gi * [w * c + not (w) * l] + [not (Gi) * w * c]

Given the assumption that the average cost c of each alert is less than the average loss l
of each unwarned attack,

[c * w * Gi] < [l * Gi * not (w)]
Therefore, to minimize the first term Equation Z, namely to minimize the quantity Gi * [

w * c + not (w) * l], it is necessary to maximize correspondence of w with Gi.
Examining the second term of Equation Z, we note that minimizing the second term of

Equation Z, namely minimizing the quantity [not (Gi) * w * c] requires minimizing
correspondence of [not (Gi)] with w.

In other words, given that Equation Z represents harm, minimizing harm requires
maximizing correspondence of w with Gi while minimizing correspondence of w with [not (Gi)
]. “Optimal” minimization of harm then would be cost c for each Gi with no penalties l for Gi
with no w, and no penalties c for w with no Gi. For this reason, optimization in minimizing harm
has a linear relationship with minimizing quantity M where:

M = [c * w * not (Gi)] + [l * Gi * not (w)]
Given that c and l are constants, this is effectively similar to minimizing M’ where:

M’ = [(c / l) * w * not (Gi)] + [Gi * not (w)]
We note from the decision logic that w is a function of Pa:

w = [POS (Pa – (c / l)] * [Pa – (c / l)]

We recall the definition of Pa as

Pa = P (Ai > 0 | Q0 = q0, T0 = t0, ..., Qi = qi, Ti = ti).
We then consider Pa as a function of the histories of observables in Q, T, and A.

Optimizing the indications and warning system then is the challenge of minimizing harm by
selecting sets of observables in Q, T, and A, and selecting functions for Pa such that Pa = f (Q, T,
A) generates a sequence of warnings wi that minimize M’.

Given this then, the solution of this optimization problem then lies in selecting the suite
of observables, sensors, and functions that generate sequences of warnings that minimize M’.

The I&W observable that comprised the optimized suite was the database query time
series. Experimentation with the database scenarios yielded some useful cyber sensors for the
optimized suite, such as a new state being added to the finite state machine, irregularly timed
queries, unusually complex queries, and unusual use of columns.

 167

7.4.2 Optimized Suite of I&W Observables / Cyber Sensors

Given our formulation of the optimization problem for I&W of insider database attacks,

data from the sensors described in the previous section could be utilized for determining whether
or not to alert on detection of a possible attack.

In order to facilitate testing with the database scenarios mentioned in the previous
section, Symantec developed a demonstration and evaluation prototype, implementing the
database sensors observing the database query time series. The Symantec database prototype is
configurable with the “cost of notification” and the “prospective loss from attack” values that
enable solving the optimization problem (again, minimizing the harm in terms of whether or not
to alert an HSA on a prospective attack). For each query in the query time series of a given
simulated scenario, the probability of attack is calculated and the prospective benefit (i.e.,
reduction of harm) of alerting an HSA is calculated to determine whether or not to alert on the
query.

For the optimized suite of I&W observables / cyber sensors, each observable value is
calculated for each query in the query time series – the transformations required on the query
time series to calculate each observable value in general do not preclude their calculation for
each query, in each database scenario. However, some observables / sensors demonstrated more
utility than others in terms of calculating the probability of attack, depending on the database
scenario being tested.

The following sensor types demonstrated utility in calculating the probability of attack
during experimentation with the database scenarios and attacks:

1. fsm-is-new-state: a sequence of query types occurs that has not previously been seen
(OLTP1, OLTP4, and GP1 scenarios)

2. delay-regime: slow queries, indicative of reconnaissance activity (OLTP3, DW4, and
GP1 scenarios)

3. delay-var-regime: irregularly timed queries, again indicative of reconnaissance
activity (OLTP3, DW4, and GP1 scenarios)

4. complexity-regime: unusually complex query, indicative of reconnaissance (OLTP3
and DW4 scenarios)

5. coherence-regime: unusual lack of variation in queries (OLTP3 scenario)
6. column-unlikely: a rarely seen column (OLTP3, DW4, and GP1 scenarios)
7. column-set-unlikely: a rarely seen set of columns (DW1 and DW4 scenarios)
Please note that data from these sensors, and possibly others, is fused when making the

determination of notifying an administrator of a potential attack – thus, no single sensor variable
alone is necessarily indicative of an attack. Please also note that optimization was only done for
the following scenarios:

• OLTP1
• OLTP3
• OLTP4
• DW1
• DW4
• GP1

 168

For this set of scenarios, pruning any of the sensors decreased the suite’s ability to
reliably detect such breadth of attacks. Moreover, for this set of scenarios, adding additional
scenarios either introduced additional false-positives, each carrying cost c for each additional
false positive, or simply did not reduce either false positives or false negatives. In this regard the
set of sensors above represents an optimized suite of cyber sensors corresponding to I&W
observables.

7.5 Task 5 – Test and verify research outcomes using real information
infrastructure data that is available at Symantec.

Symantec tested and verified research outcomes from ASU using real information

infrastructure data available at Symantec.
ASU provided research outcomes via technical reports and presentations. Symantec

possesses real information infrastructure data, in the form of Sobig e-mail virus samples, which
could be run in secure laboratory facilities only within Symantec. These samples consist of code
and data obtained from real information infrastructure. Using these samples, Symantec
generated additional data to enable testing and verification of research outcomes from ASU.

The research outcomes from ASU took the form of performance variables that were
determined to be possible indicators of cyber attack via a variety of statistical analyses.
Symantec was able to test and verify a subset of these research outcomes using the Sobig sample
and generated data, as outlined below.

The first category of research outcomes provided by ASU related to probability
distributions of performance variables. In that section, the common performance object variable
groups that shift distribution between phases were Memory, Process, Processor, and Terminal
Services Session. In Symantec’s testing with data generated from Sobig experimentation, the
first three of these performance object variable groups – Memory, Process, and Processor – also
shifted distributions. Terminal Services Session could not be verified; this difference may be
caused by differences in performance variables provided by Microsoft for different types of
systems (e.g., laptops versus desktop machines, Windows 2000 versus Windows XP).

The second category of research outcomes provided by ASU and verified by Symantec
related to difference in means (averages) of performance variables. ASU lists 32 example
performance variables that shift averages among phases for all six of their investigated attacks.
Of these 32 variables, the 24 variables that related to the Memory, Objects, and Process
performance objects were also confirmed to shift averages in Symantec’s testing with data
generated from Sobig experimentation. The other 8 variables that could not be confirmed all
related to the Terminal Services Session object. Absence of Terminal Services Session data
appears to be a result of differences in performance variables provided by Microsoft for different
types of systems.

In sum:
• of the 4 performance object variable groups demonstrating shifts in distributions in

evaluation at ASU, 3 of those 4 object groups demonstrated similar shifts in
distributions during evaluation at Symantec.

 169

• of the 32 performance variables demonstrating shifts in averages in evaluation at
ASU, 24 of those 32 performance variables demonstrated similar shifts in averages
during evaluation at Symantec.

In this regard, Symantec verified research outcomes regarding 3 of 4 performance
variable object groups and 24 of 32 specific performance variables as generalizing across the
different experimentation environments and different attacks between ASU and Symantec. The
remaining research outcomes could not be verified as generalizing, most likely due to differences
in performance variables provided by Microsoft for different types of systems, or differences in
interaction of the operating system with underlying hardware across different hardware
platforms. Most specifically, the research outcomes that differed all related to Terminal Services
Session object variables, and the software provided to Symantec by Microsoft consistently did
not capture Terminal Services Session data. However, we see it as a positive result that 27 of 36
research outcomes (3 of 4 object groups and 24 of 32 performance objects) did generalize across
alternative hardware, operating systems, and attack sets, and that all non-verified outcomes
might be a result of a single “common cause” of inconsistency of behavior of Microsoft software
across versions and hardware platforms. However, the false positive rate is not yet known for
production deployment of any of the 27 possible indicators.

7.6 Task 6 – Provide documents that reflect monthly status and final technical
report.

Symantec provided documents and e-mails reflecting monthly status. Symantec is also

providing this final technical report.

7.7 Task 7 – Participate in project meetings as necessary.

Symantec participated in project meetings as requested every quarter, either in person or

via telecon. Symantec also attended all three ARDA PI meetings.
The following is a (partial) listing of quarterly team meetings and ARDA PI meetings

attended in person or via telecon by Symantec representatives:
• 11/19/2003 – 11/20/2003: ARDA PI Meeting in Nashville, TN; attended by Juanita

Koilpillai
• 2/3/2004 – 2/5/2004: Quarterly status meeting at ASU; attended by Juanita

Koilpillai
• 6/6/2004: Quarterly status meeting via telecon; attended by Juanita

Koilpillai and Matthew Elder
• 6/22/2004 – 6/24/2004: ARDA PI Meeting in La Jolla, CA; attended by Matthew

Elder
• 8/10/2004: ARDA Site visit to ASU; attended by Matthew Elder
• 12/1/2004: Quarterly status meeting at ASU; attended by Matthew

Elder
• 1/11/2005 – 1/13/2005: ARDA PI Meeting in Destin, FL; attended by Matthew

Elder

 170

7.8 Conclusion

Symantec:

• Collected and examined known cyber attack cases and scenarios to develop threat and
attack profiles. These attack cases included database attack cases and virus/worm
attack cases.

• Discovered characteristics of cyber signal and noise (attack data and normal data) at
each observable point. These characteristics included Pearson correlation percentages
for attack data and normal data collected remotely and locally.

• Investigated, developed, and tested sensor models of signal detection, and a sensor
fusion model for each observable point. These sensor models are stochastic models
created by processing the query time series, and the fusion model investigated,
developed, and tested was a Bayesian fusion model.

• Formulated and solved an optimization problem to select an optimized suite of I&W
observables / cyber sensors. The optimized suite included delay regimes and unlikely
columns utilized.

• Tested and verified research outcomes using real information infrastructure data that
is available at Symantec. The real infrastructure data included virus and worm
samples taken from real information infrastructure. The outcomes tested and verified
included shifts in distribution and averages of the Memory, Objects, Process, and
Processor performance objects and variables.

• Provided documents that reflect monthly status and this final technical report.
Monthly status documents are included again in Appendix A for convenience.

• Participated in project meetings as necessary, including ARDA PI meetings in
November 2003, June 2004, and January 2005, and quarterly status meetings in
February 2004, June 2004, August 2004, and December 2004.

Moreover, towards verification of the fundamental hypothesis that a signal and noise

detection and separation approach might be useful to cyber indications and warnings – the
fundamental hypothesis underlying the ASU research effort and our subcontract – Symantec
verified shifts in probability distribution of 3 performance object groups and shifts in averages of
24 performance variables amongst phases of attacks, across platform differences and differences
in attacks between ASU and Symantec.

Additionally, in pursuing application of the ASU methodology to other attack classes
manifesting themselves in other data streams, Symantec was able to identify 7 cyber sensors as
an optimized suite useful in calculating the probability of attack. We consider each of these 7
sensors and verification of each of these 27 performance object and variable research outcomes
to each be a substantial finding.

A logical next step, beyond the scope of this contract, might be evaluation of false-
positive rates and receiver operator characterization on larger and live production systems for
each variable at multiple thresholds of deviation and each sensor along with the sensor fusion
model. However, as mentioned previously, and consistent with the direction of ASU, we

 171

consider the 7 sensors and verification of 27 performance object and variables to be substantial
findings. Taken in the context of completion of all the tasks mentioned above, these results and
this report then fulfill our responsibilities for the technical tasks of the subcontract.

8. AT&T Final Report

The Internet is a global, decentralized network comprised of many smaller interconnected
networks. Networks are largely comprised of end systems, referred to as hosts, and intermediate
systems, called routers. Information travels through a network on one of many paths, which are
selected through a routing process. Routing protocols communicate reachability information
(how to locate other hosts and routers) and ultimately perform path selection. A network under
the administrative control of a single organization is called an autonomous system (AS). The
process of routing within an AS is called intradomain routing, and routing between ASes is
called interdomain routing. The dominant interdomain routing protocol on the Internet is the
Border Gateway Protocol (BGP). BGP has been deployed since the commercialization of the
Internet, and version 4 of the protocol has been in wide use for over a decade. BGP works well in
practice, and its simplicity and resilience have enabled it to play a fundamental role within the
global Internet. However, BGP has historically provided few performance or security
guarantees.

The limited guarantees provided by BGP often contribute to global instability and
outages. While many routing failures have limited impact and scope, others lead to significant
and widespread damage. One such failure occurred on 25 April 1997, when a misconfigured
router maintained by a small service provider in Virginia injected incorrect routing information
into the global Internet and claimed to have optimal connectivity to all Internet destinations.
Because such statements were not validated in any way, they were widely accepted. As a result,
most Internet traffic was routed to this small ISP. The traffic overwhelmed the misconfigured
and intermediate routers, and effectively crippled the Internet for almost two hours.

In this project, we aimed to provide solutions to BGP security through cybersignal
detection. Our objective was first to characterize the types of attacks that can be made against
BGP and the Internet routing fabric, and then to understand trends in the routing data that
characterize BGP traffic and help differentiate attacks and other notable events from random
noise in the system. We fulfilled the first seven objectives we faced prior to the end of our
contract in September, 2004.

 172

Figure 59. Number of unique paths per prefix. This is an indicator that paths in BGP are

very dense, giving a good indication of how to detect signal accordingly.

8.1 Deliverables

We have identified a number of notable characteristics in the global BGP routing data.

Using the publicly-accessible RouteViews repository of BGP data from over 40 routers located
in autonomous systems around the world, we have created tools to effectively filter the data to
expose interesting and important trends and identifying characteristics. Examining over 218
million BGP UPDATE messages, we made discoveries as to the tail mass of BGP path vectors,
and found the number of unique paths per advertised prefix and autonomous system are
generally very dense and stable, as shown in Figure 59. Our inquiries into rate of discovery of
new unique paths also uncovered a periodicity to the rate at which paths are added, implying that
the global network is most stable on weekends. This is shown in Figure 60.

8.1.1 Collect known attack cases and scenarios.

We have thoroughly investigated the threats and attack scenarios against BGP, and have
created a comprehensive list of current countermeasures against attacks. Please see the next
section for a full chart showing potential BGP attacks. Additionally, we have outlined a full
threat model for BGP, a novel contribution to the research literature. Our work has been
summarized in an AT&T technical report awaiting submission as a journal. Examples of attacks
against BGP are numerous. Attacks against confidentiality are those where the channel over

 173

which two parties communicate could be subverted by a third party through eavesdropping or
other passive attacks, including those against the underlying TCP transport protocol (e.g., SYN
flood, RST attack, sequence number guessing). Integrity attacks are those where the attacker
does not merely scan the channel, but actively tampers with BGP messages. Message insertion,
deletion, modification, and replay attacks are possible through these methodologies. Larger scale
attacks include fraudulent advertisement of origin information and the subversion of path
information. We have examined these attack vectors in great detail and have reported our
findings in papers on origin and path authentication in interdomain routing, that have been
accepted and submitted, respectively, to major networking and security conferences.

Figure 60. Rate of Discovery: the number of new unique paths discovered aggregated by
AS. This graph shows that for all listeners, there are relatively few new unique paths added

on a daily or weekly basis, another good signaling indicator.

8.1.2 Examine each attack scenario or case to derive the cause-effect network for the attack
scenario.

In our technical report, we identify the parties that are liable to initiate attack sequences
and examine he effects that these attacks will have within individual autonomous systems, as
well as potential effects on the global Internet as a whole. As an example of this, we consider the

 174

denial of service attack on BGP speakers through the RST attack. A remote attacker spoofs a
TCP RST message to a router’s connection with a BGP peer, causing the router to lose its
connection. The resulting effects are greater than the loss of two-party communication: because
BGP requires distributed computation, if a router goes offline, then when it comes back online,
its routing table will need to be recreated. As a result, it re-announces all of the prefixes it is
originating, a process known as a table reset. The neighboring routers dump their BGP tables to
the peer that has just come online so that it has full data for making its routing decisions. Sifting
through this information places a considerable computational burden on the router, and delays
processing of normal traffic. If the router is continually knocked offline, the routes it advertises
will disappear and reappear in peer routing tables. This is called route flapping and is detrimental
to all routers, as extra computation and reconfiguration of routes becomes necessary if this
happens often. In order to lower the burden, unstable routes are often penalized through a
process called route dampening. Neighboring routers will ignore advertisements from the router
for an increasing amount of time, depending on how often the route flapping occurs. We
consider other attacks in our report that follow a similar cause-effect derivation.

8.1.3 Examine the attack scenarios and cases to develop threat profiles.

The comprehensive threat model that we have devised examines the potential attack
scenarios and profiles the nature of each threat in order, based on empirical understanding on
trends within the BGP data, as well as the results from previous academic contributions to the
field and data from leading researchers within the networking community. We consider the
ramifications of a dysfunctional routing system under attack. An individual router is subject to
being overloaded with information, knocked offline or taken over by an attacker. An autonomous
system can have its traffic black-holed or otherwise misrouted, and packets to or from it can be
grossly delayed or dropped altogether. Malfunctioning ASes harm their peers by forcing them to
recalculate routes and alter their routing tables. We have considered profiles of these attacks in
our published and submitted papers.

8.1.4 Develop attack profiles by enlarging the cause-effect network of each attack scenario
with threat elements by putting the attack scenario under an applicable threat profile.

The information that we collected and surveyed through the academic literature was
collected and displayed as a chart showing a taxonomy of attacks, and further expanded upon in
the survey we prepared that catalogued attacks and countermeasures. This table is given in the
following section.

 175

Figure 61. Number of signature validations required by scheme. Our schemes (Prefix,

Origin AS, All AS) represent as much as a 97% decrease in validations over the S-BGP
standard, thus making real-time path authentication possible due to the decrease in

cryptographic computations required.

8.1.5 Compare all the attack profiles and define classes of attack profiles. Prepare and
deliver a technical report on attack profiles. Prepare and submit journal/conference
paper(s) using materials from this technical report.

Our literature survey provided comparisons of attacks against the BGP infrastructure
from a variety of sources. The technical report we prepared is a comprehensive source for these
attacks and potential solutions to these problems, as well as analysis as to the benefits and
shortcomings of individual solutions [40]. This work has been expanded based on contributions
from leading researchers in the field and will shortly be submitted to a major journal for
consideration as a novel contribution to the research community, and particularly timely given
the focus on BGP attacks.

 176

8.1.6 Set up a testbed of the IC information infrastructure.

We used the AT&T network to generate a very large corpus of experimental data for use
in evaluating potential cybersignal solutions to network attacks. This data represents tens of
millions of individual flows, and has been extensively formatted and filtered for use in
experimentation. We have aggregated the data to show almost 8.5 million individual sessions,
and this has given tremendous insight into the nature of transactional signaling.

8.1.7 Simulate each attack profile on the testbed, and collect cyber signal data, including
activity data, state change data, and performance impact data at candidate observable
points throughout the cause-effect network of the attack profile.

We tested and reported on statistical models derived from the ASU efforts on
differentiating cyber signal and noise. With the provided models and statistical software, we ran
a series of tests over the breadth of experimental data on connection flows created from the
AT&T research networks. The resulting information, based on multiple tests, was transferred to
researchers at ASU for further analysis and evaluated for correlation with other results using
cyber signal processing methods. Our own experiments, based on our data and cryptographic
constructions we have derived, show that we can do real-time path authentication based on the
computational savings our schemes provide. These schemes, if implemented by ASes, can
prevent many of the attacks we outline against path modification and deletion. Please see Figure
61, for further detail. The results of this work have been submitted to a major networking
conference, where we expect it to have significant impact in the field.

8.2 BGP Attack Classifications

 Table 86 classifies some attacks on BGP.

Table 86. Classification of BGP Attacks

 Origin Attacks

Attack Name
Threat Agency Action Vulnerability Target State Effect

Performanc
e Effect Notes

Prefix hijacking -
create a forged
UPDATE claiming to
be origin of some
prefix

Any Any Forgery Specification Data Availability,
Integrity

Timeliness,
Accuracy

This is the problem that origin authentication is
really getting at.

ATOMIC_AGGREGA
TE modification - can
cause deaggregation
of prefixes

Any Any Spoof Specification Data Availability Accuracy
The ATOMIC_AGGREGATE field is set by routers
to prevent deaggregation of routes. By allowing
deaggregation, incorrect routing of more specific
prefixes within the aggregate can result.

 177

UPDATE eavesdrop -
read the update from
the UPDATE stream.

Any Any Read Specification Data Confidentialit
y None

This is a hard one to nail down. BGP UPDATES
are generally considered public information
(because they are flooded), but UPDATEs
traversing private networks may be filtered or
aggregated before being passed on.

Policy eavesdrop -
read a policy in an
UPDATE.

Any Any Read Specification Data Confidentialit
y None

BGP policy often is local to some community
(hence the name community string), and is filtered
in some cases. Exposure of this information will
tell the adversary something about the
organizations and relationships in the network.

Prefix Removal -
remove a prefix
advertisement from
BGP UPDATE stream

Any Any Delete Specification Data Availability Timeliness,
Accuracy Cause prefix to be unavailable

Modifying Withdrawn
Routes field in
UPDATE

Any Any Spoof Specification System
, Data

Availability,
Integrity,

Confidentialit
y

Accuracy,
Precision

By modifying with Withdrawn Routes field, the
attacker can eliminate legitimate routes from the
routing table, and can repeatedly do so by
replaying the attack.

Whack-a-mole ASes -
create a bogus AS
using a unused AS
number.

Any Any Spoof Specification Data Availability,
Integrity

Timeliness,
Accuracy

Spammers use these when nobody else will
transit their traffic. These are particularly bad
because they introduce a lot of noise into the
global BGP update stream, and indirectly cause
instability.

AS impersonation -
claim to be an AS you
are not.

Any Any Spoof Specification Data Availability,
Integrity

Timeliness,
Accuracy,
Precision

This is really a problem because you only need to
convince one AS (out of the currently 16,000) that
you are the claimed AS.

 Path Attacks

Attack Name
Threat

Agenc
y Action Vulnerability Target State Effect

Performanc
e Effect Notes

Path Removal -
remove a path from
BGP UPDATE stream

Any Any Delete Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

May cause suboptimal or incorrect route to be
selected. If used to mess with routing, then
timeliness and accuracy are performance effects.
If used to reroute toward controlled AS, could be
used as confidentiality effect.

Policy Removal -
remove a policy from
BGP UPDATE
message

Any Any Delete Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

May cause suboptimal or incorrect route to be
selected. If used to mess with routing, then
timeliness and accuracy are performance effects.
If used to reroute toward controlled AS, could be
used as confidentiality effect.

UPDATE removal -
remove an update
message from the
UPDATE stream

Any Any Delete Specification Data Availability
Timeliness,
Accuracy,
Precision

Can cause the path, prefix, policy removal
behavior. This can occur either at the BGP
protocol or TCP layers.

Modify Path – add,
remove, modify hops
in the BGP path

Any Any Modify Specification Data
Availability,

Confidentialit
y

Timeliness,
Accuracy,
Precision

May cause suboptimal or incorrect route to be
selected. If used to mess with routing, then
timeliness and accuracy are performance effects.
If used to reroute toward controlled AS, could be
used as confidentiality effect.

 178

AS_PATH attribute
modification - modify
this field in the
UPDATE message

Any Any Modify Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

AS_PATH with an incorrect origin AS can play
havoc with routing, causing blackholes. AS_PATH
can be shortened, making the route appear more
favourable to peers.

NEXT_HOP atribute
modification - can
cause routing changes

Any Any Modify Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

Changing the NEXT_HOP in conjunction with path
modification can cause an attacking router to
control and engineer traffic patterns.

Modify Policy -
change the policy such
that the route becomes
more or less desirable.

Any Any Modify Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

May cause suboptimal or incorrect route to be
selected. If used to mess with routing, then
timeliness and accuracy are performance effects.
If used to reroute toward controlled AS, could be
used as confidentiality effect.

MULTI_EXIT_DISC
modification can
harm routing inside AS

Any Any Modify Specification Data Availability Timeliness,
Accuracy

The multi exit discriminator (MED) is a way of
determining which external link to progagate
updates on, based on information from the peer.
Modification of this can cause suboptimal routing
within a peer AS.

LOCAL_PREF
modification can
harm routing inside AS

Any Any Modify Specification Data Availability Timeliness,
Accuracy

The local preference is a metric that helps
determine which external link to prefer for given
prefixes. Manipulation of this value can cause
suboptimal routing within the affected AS.

Path forgery - create
a forged UPDATE with
a bogus path for a
known prefix.

Any Any (Forgery
?) Specification Data Availability,

Integrity
Timeliness,
Accuracy

It really does not matter if the prefix is being
advertised by some known AS. Whack-a-mole
Ases (see below) are really good for creating a
stream of these.

Modifying the NLRI
field of the UPDATE
message

Any Any Spoof Specification Data
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy,
Precision

By changing the network layer reachability
information in the UPDATE message, routing can
be disrupted through the system, since the actual
routing advertisements can be forged.

 Timing Attacks

Attack Name
Threat

Agenc
y Action Vulnerability Target State Effect

Performanc
e Effect Notes

Forged OPEN
message during BGP
session

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy

If the BGP speaker is in the Connect, Active or
Established state, this message will force the
connection to be closed, with the same effects as
discussed above.

Bogus OPEN
connection when
router is waiting to
establish connection

Any Any Spoof Specification System Availability Timeliness,
Accuracy

If the router is in the OpenSent state, an OPEN
message will cause the connection to be
confirmed. When the real router sends an OPEN,
the connection will be closed because of
connection collision.

OPEN message
arrives while
OpenDelay timer in
OpenSent state

Any Any Terminatio
n

Implementatio
n System Availability Timeliness,

Accuracy

The router should not be in the OPEN_SENT
state if the DelayOpen timer is sent, but an
implementation error with the finite state machine
can cause this. An attacker familiar with the
implementaion could bring down the connection
this way.

Sending KEEPALIVE
when peering
connection in Connect,
Active or OpenSent

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy
In any of these states, the BGP speaker moves
into the Idle state and will not establish a
connection with the intended peer.

 179

state

TCP SYN forgery Any Any Spoof Implementatio
n System

Availability,
Integrity,

Confidentialit
y

Timeliness,
Accuracy,
Precision

If the attacker sends a SYN to a BGP speaker, the
real peer's SYN would look like a second
connection. If the attacker keeps the connection
alive by guessing the correct SYN ACK, a collision
between the two connections could occur,
dropping the legitimate connection as a result.

SYN flooding Any Any
Flood

(Single
Source)

Implementatio
n System Availability Timeliness,

Accuracy

SYN floods are discussed in
http://www.cert.org/advisories/CA-1996-21.html -
by not responding to the SYN ACK, but opening a
new TCP connection, the attacker can fill the
buffer of available open connections to the router,
preventing legitimate connections.

TCP SYN ACK
hijacking Any Any Spoof Implementatio

n System
Availability,

Integrity,
Confidentialit

y

Timeliness,
Accuracy

By responding to a SYN set up during a legitimate
connection between two BGP peers, an attacker
can send a SYN-ACK. If timed correctly, the
legitimate peer's SYN-ACK will cause the TCP
connection to be terminated, which brings down
the BGP session in the process.

Altering BGP Timers Any Any Spoof Implementatio
n System Availability,

Integrity
Timeliness,
Accuracy,
Precision

Gaining control of the router could allow the
attacker to modify the KeepAlive, Hold, or
OpenDelay timers, causing peers to consider the
connection unresponsive and terminate it.

 Availability Attacks

Attack Name
Threat

Agenc
y Action Vulnerability Target State Effect

Performanc
e Effect Notes

Route Flooding -
flood a BGP speaker
with more UPDATEs
than it can handle.

Any Any
Flood

(Single
Source)

Specification System Availability Timeliness
This occurs naturally by table resets, and can be
caused by forged TCP RST packets, or by forged
BGP session termination messages.

Speaker death - shut
down (process layer)
or isolate (network
wise) the BGP speak
such that the BGP
session closes.

Any Any Terminatio
n Specification System Availability Accuracy

This can be caused by forged TCP RST packets,
or by forged BGP session termination messages.
If the speaker comes back, this can cause
flooding (both locally and globally).

Syntax error in
message header - will
close a BGP
connection

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy

Syntax errors cause the BGP speaker to close the
connection and delete all routes associated with
the connection, causing the router to reprocess
information to determine how to now route those
prefixes. This can cause a cascade effect with
connected peers resetting their routes as well.

Syntax error in OPEN
message will close
connection

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy
OPEN message syntax errors, such as errors in
paramters or unsupported version numbers, will
close a connection.

 180

Receiving
NOTIFICATION
message brings down
connection

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy

Receiving NOTIFICATION message will cause
BGP speaker to bring down the connection, and
release and recalculate routes. This can cascade
through to other routers.

Modifying Unfeasible
Routes Length, Total
Path Attribute Length
attributes in UPDATE
message

Any Any Terminatio
n Specification System

, Data
Availability,

Integrity
Timeliness,
Accuracy

Modifying these parts of the UPDATE message
will cause a NOTIFICATION message to be sent,
terminating the connection.

Incorrect
modification of Path
Attributes can cause
session failure

Any Any Terminatio
n Specification System

, Data
Availability,

Integrity
Timeliness,
Accuracy

If the attributes are incorrectly modified, a parse
error will occur, resulting in a NOTIFICATION
message being sent and the connection being
terminated.

Malformed UPDATE
message will close
connection

Any Any Terminatio
n Specification System Availability Timeliness,

Accuracy

Sending an UPDATE message that contains
errors will bring down the connection with the peer
and cause all routes learned to be deleted and
require recalculation. This can cascade to other
routers.

TCP RST/FIN attack Any Any Spoof Implementatio
n System Availability Timeliness,

Accuracy

Spoofing a TCP RST by guessing the correct
sequence number will cause a TCP (and therefore
BGP) connection to terminate. The attack works
against the FIN as well, but there would be
notification that the connection was closing.

Forcing manual reset
of router Any Any Terminatio

n
Implementatio

n System Availability Timeliness,
Accuracy

Gaining control of the router through an attack like
the SNMP buffer overflow exploit (eg.
http://www.securityfocus.com/bid/1901) could
allow the attacker to remotely shut down the
router.

Link Cutting -
hampering connectivity
through making the
network link
inaccessible

Spies,
Terrorists,
Profession

al
Criminals,
Industrial

Espionage

Any Terminatio
n

Implementatio
n System Availability Timeliness,

Accuracy

Described in
http://www.research.att.com/~smb/papers/reroute.
pdf, link cutting can take the form of the backhoe
attack, ping of death or DoS of a given link. If the
attacker knows the network topology, he or she
can force packets to go through the paths they
want through this attack.

Physical destruction
of router

Spies,
Terrorists,
Profession

al
Criminals

Human Terminatio
n

Implementatio
n System Availability Timeliness,

Accuracy

Physically disabling the router by destroying the
interfaces or the machine itself is a possible
attack. Physical sercurity of important network
elements is always critical.

MD5 authentication
attack Any Any Authenti-

cate
Implementatio

n System
Availability,

Integrity,
Confidentialit

y
Accuracy

While MD5 protection between peers can mitigate
many of the above threats, attacking the
authentication could yield ways to attack the
protocol.Brute force and hash collision attacks are
possible.

 181

9. Conclusion
 In this report, we consolidate our research/reporting for the duration of this project. We
also include final project reports from our subcontractors. The first subcontractor, Symantec, was
involved throughout the duration of the project. The second subcontractor, AT&T, was involved
in the project until September 2004, at which time the PI for that subcontract left AT&T and the
contract between ASU and AT&T terminated.
 In addition to required reporting, we have produced several journal papers and one thesis
on this research, which are referenced in each of the respective subsections of this final report.
The final technical report and papers represent a summary of our major findings in as much as
the scope of such research dissemination allows. We have exhibited the feasibility of our
approach to cyber attack recognition, and additionally provided results to highlight the potential
benefits of this work.

 182

References

[1] N. Ye, “Mining computer and network security data.” in N. Ye (ed.), The Handbook of

Data Mining. Mahwah, New Jersey: Lawrence Erlbaum Associates, 2003, pp. 617-636.
[2] P.E. Proctor. “Practical Intrusion Detection HandBook.” Prentice Hall, third edition,

2001.
[3] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu, “Probabilistic techniques for intrusion

detection based on computer audit data.” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 31, No. 4, 2001, pp. 266-274.

[4] G. Box, and A. Luceno, “Statistical Control by Monitoring and Feedback Adjustment.”
John Wiley & Sons, New York, New York, 1997.

[5] Fisch EA, White GB (2000) Secure computers and networks: Analysis, design and
implementation. CRC Press, Boca Raton.

[6] Ye N (2002) “QoS-centric stateful resource management in information systems.”
Information Systems Frontiers, Vol. 4, No. 2, pp. 149-160.

[7] Roush M, Webb W (2000) Applied reliability engineering. University of Maryland,
College Park, Maryland.

[8] Haines, J. W., Lippmann R. P., Fried D. J., Ziessman M. A., Tran E., Boswell S. B.
"1999 DARPA Intrusion Detection Evaluation: Design and Procedures”, Technical
Report 1062, February 15, 2001.

[9] John D. Howard, Thomas A. Longstaff, “A Common Language for Computer Security
Incidents”, Technical Report SAND98-8667, Sandia National Laboratories, October
1998, <http://www.cert.org/research/taxonomy_988667.pdf>, (28 October 2003)

[10] Kristopher Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems”, Massachusetts Institute of Technology, June 1999

[11] CERT Advisory “CA-2003-04 MS-SQL Server Worm”, 27 January 2003,
<http://www.cert.org/advisories/CA-2003-04.html> (24 September 2003)

[12] CERT Advisory “CA-2000-04 Love Letter Worm”, 9 May 2000,
<http://www.cert.org/advisories/CA-2000-04.html> (24 September 2003)

[13] Symantec security response, “W32.Sobig.F@mm”, 10 September 2003,
<http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.f@mm.html> (24
September 2003)

[14] Symantec security response, “W32.HLLW.Fizzer@mm”, 30 May 2003,
<http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.fizzer@mm.html>
(24 September 2003)

[15] Symantec security response, “W32.Mimail.A@mm”, 01 August 2003,
<http://securityresponse.symantec.com/avcenter/venc/data/w32.mimail.a@mm.html> (24
September 2003)

[16] Symantec security response, “W32.Bugbear@mm”, 11 July 2003,
<http://securityresponse.symantec.com/avcenter/venc/data/w32.bugbear.b@mm.html>
(24 September 2003)

[17] Symantec security response, “W32.Welchia.Worm”, 10 September 2003,
<http://www.symantec.com/avcenter/venc/data/w32.welchia.worm.html#technicaldetails
> (24 September 2003)

 183

[18] Cox, M. J. (1998). Overview of security vulnerabilities in Apache httpd 1.3
(http://www.apacheweek.com/features/security-13).

[19] http://www.evicted.org/projects/writings/mftpadvisory.txt
[20] http://www.cert.org/advisories/CA-1998-01.html
[21] N. Ye and T. Farley, “Cyber Signal Detection: A New Approach to Intrusion Detection,”

submitted.
[22] N. Ye and T. Farley, "A Signal-noise Separation Approach for Detecting Cyber Attacks,"

submitted.
[23] N. Ye, C. Newman and T. Farley, "A System-Fault-Risk Framework for Cyber Attack

Classification and Profiling," Information Systems Frontiers, submitted.
[24] Bashettihalli Harish, Cyber Attack Profiling Using Cause Effect Networks, Thesis,

Arizona State University, December 2004.
[25] T. C. Bailey, T. Sapatinas, K. J. Powell and W. J. Krzanowski. “Signal Detection in

Underwater Sound Using Wavelets.” Journal of the American Statistical Association,
Vol. 93, No.441, 1998, pp73-83.

[27] L. Atlas and P. Duhamel, “Recent developments in the core of digital signal processing.”
IEEE Signal Processing Magazine, 16(1), 1999, pp. 16-31.

[28] A.K. Jain, P. Duin and J. Mao, “Statistical Pattern Recognition: Review.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, 2000, pp. 4-
37.

[29] F. Botella, J. Rosa-Herranz, J. J. Giner, S. Molina and J. J. Galiana-Merino, “A real-time
earthquake detector with prefiltering by wavelets.” Computers & Geosciences, Volume
29, Issue 7, August 2003, pp. 911-919.

[30] Regmon utility from Sysinternals:
http://www.sysinternals.com/ntw2k/source/regmon.shtml

[31] Win dump utility: http://windump.polito.it/ http://cert.uni-
stuttgart.de/archive/bugtraq/1998/09/msg00036.html,

[32] “EZPublish Forum Discloses Installation Path and Database Password to Remote Users”,
URL: http://securitytracker.com/alerts/2003/Apr/1006578.html

[33] NMAP security scanner URL: http://www.insecure.org/nmap/
[34] http://www.windowsitpro.com/Article/ArticleID/39845/39845.html
[35] (http://www.microsoft.com/windows2000/techinfo/reskit/en-

us/default.asp?url=/windows2000/techinfo/reskit/en-us/counters/counters2_nbvr.asp).
[36] Pearl, Judea. “Fusion, propagation, and structuring in belief networks”. Artificial

Intelligence, 29(3):241-288, 1986.
[37] Dempster, A.P. “A generalization of Bayesian inference”. Journal of the Royal Statistical

Society, Series B 30 205-247, 1968.
[38] Shafer, Glenn. A Mathematical Theory of Evidence. Princeton University Press, 1976.
[39] Shortliffe, E.H. Computer-based medical consultation: MYCIN. Elsevier, 1976.
[40] K. Butler, T. Farley and P. McDaniel, "A Survey of BGP Security Issues and Solutions",

Technical Report TD-5UGJ33, AT&T Labs - Research, Florham Park, NJ, February
2004. (revised June 2004).

 184

List of Acronyms
ACF Autocorrelation Function
ANOVA Analysis of Variance
AR Autoregressive Model
ARDA Advanced Research and Development Activity
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
ARP Address Resolution Protocol
AS Autonomous System
ASU Arizona State University
BGP Border Gateway Protocol
CPU Central Processing Unit
CSR Customer Service Representative
DB Database
DFC Data, Feature and Characteristic
DNS Domain Name Service
DOG Derivative of Gaussian
DOS Denial of Service
DW Data Warehouse
EWMA Estimated Weighted Moving Average
FSM Finite State Model
FTP File Transfer Protocol
GLM Generalized Linear Model
GLS Generalized Least Square
GP General Purpose
HSA Human Security Administrator
I&W Indications and Warning
IC Intelligence Community
ICA Independent Component Analysis
IMA Integrated Moving Average
IP Internet Protocol
KS Kolmogorov-Smirnov
MC Multiple Correlation Coefficient
MED Multi Exit Discriminator
OLS Least Square Model
OLTP Online Transaction Processing
PC Principle Component
PCA Principal Component Analysis
PLS Partial Least Square
SFR System Fault Risk
SMB Server Message Block
SPC Statistical Process Control
SPRT Sequential Probability Ratio Test
SQL Structured Query Language

